张鹏举

简介


张鹏举,中国科学院物理研究所,特聘研究员,博士生导师。

---     

2024~           中国科学院物理研究所,珠三角研究部,超快物质科学中心/阿秒中心,特聘研究员

2018-2024,苏黎世联邦理工大学(ETH Zurich),超快谱学与阿秒科学研究组,博士后&资深研究员

2016-2018,中国科学院近代物理研究所,原子分子动力学研究组,副研究员

2013-2016,日本理化学研究所(RIKEN),東原子、分子、光学研究组,博士后研究员

2010-2013,中国科学院近代物理研究所,原子、分子物理,理学博士

2007-2010,中国科学院近代物理研究所,原子、分子物理,理学硕士

2003-2007,河北大学,物理科学与技术学院,应用物理学,理学学士 

主要研究方向


高次谐波产生技术的快速发展和完善,极大地促进了阿秒激光脉冲的应用,使得在电子以及核的本征运动时间尺度内观察并描述其运动规律成为现实。光诱导的超快激发态动力学,即电荷转移和能量传递机制,是原子、分子、光物理、光化学以及光致生物反应的核心问题之一。本课题组主要基于超快激光装置,结合高次谐波产生技术,从事阿秒激光脉冲与原子、分子、液体水、水溶液、常温液相分子等体系相互作用导致的超快激发态动力学实验研究。

具体研究方向包括:

1,  阿秒激光脉冲的产生,测量和表征;

2,  磁瓶式高分辨光电子谱仪的研制及应用;

3,  原子、分子的电子态相干动力学;

4,  液相、气相超快非绝热化学反应动力学;

5,  液体水,水溶液的电子态结构及其超快激发态动力学;

过去的主要工作及获得的成果


基于高次谐波产生技术,液体微束技术和磁瓶式高分辨光电子谱仪技术,分别发展并建立了:气相(原子、分子),液相(液体水,水溶液,常温液相分子)样品的时间分辨光电子能谱,电子-电子符合能谱实验方案,并取得了以下代表性成果:

1,  针对原子内层电离诱发的双俄歇电子发射过程,建立了时间分辨的多电子符合能谱测量技术,首次测量并得到了Xe(4d-1)离子级联俄歇过程的寿命;

文章链接:Phys. Rev. Lett. 132, 083201 (2024)(一作兼共同通讯)

2,  针对分子激发态自电离和直接电离通道的干涉问题,利用XUV泵浦-IR探测的双共振增强效应,通过振动波包的量子拍相位,揭示了自电离态在分子激发态动力学的作用;

文章链接:Phys. Rev. Lett. 130, 153201 (2023)(一作兼共同通讯)

3,  针对液体水靶的流动电势,液体水和金属谱仪的真空能级差等对光电子探测的影响,基于均匀电场原理,建立了液体靶“偏压补偿”新方案,系统测量了液体水各价带电离能,并定量研究了二次电子的产生机制,为开展液相激发态动力研究奠定了基础;

文章链接:J. Phys. Chem. Lett. 11, 1789 (2020) (第二作者);

J. Phys. Chem. Lett. 12, 2990−2996 (2021) (通讯作者);

Chem. Sci., 13, 1675-1692 (2022) (通讯作者))

4,  针对激发态液体水的非局域自电离直接实验观测的难题,建立了液相光电子-二次电子的符合测量方案,首次观测到了液体水2a1内价带的分子间库伦退激过程(Intermolecular Coulombic Decay (ICD));

文章链接:Phys. Rev. Lett. 128, 133001 (2022) (Editors' Suggestion)(一作兼共同通讯)

5,  针对溶剂化效应对液相样品非绝热激发态动力学的影响,克服了液相样品光电子的高计数率,稳定性差,空间电荷效应等关键难题,并进行了液气两相激发态动力学的对比研究,发现了液相分子异构化过程中的相干保持及溶剂化效应对分子超快异构化过程的减速现象。

文章链接:Nature Chemistry 14,1126–1132 (2022) (共一兼共同通讯)

代表性论文及专利


(*通讯; #共一)

回国之后(2024年3月起)

      1,Ziwei Chen, Ziyuan Li, Jingchen Xie, Pengju Zhang*, Tiantian Tong, Yue Wang, Jie Hu, Hans Jakob Wörner, and Shan Xi Tian*  (合作文章)

      Direct Observation of Anionic Yields from the Liquid–Vapor Interface by Electron Irradiation

      J. Phys. Chem. Lett. 2024, 15, 21, 5607–5611

     DOI: https://pubs.acs.org/doi/10.1021/acs.jpclett.4c00521

回国之前(截止2024年3月)

1, Pengju Zhang* et al, Time-resolved multi-electron coincidence spectroscopy of double Auger-Meitner decay following Xe 4d ionization.

Phys. Rev. Lett. 132, 083201 (2024)

DOI: https://doi.org/10.1103/PhysRevLett.132.083201

2, Pengju. Zhang* et al, Effects of autoionizing resonances on wave-packet dynamics studied by time-resolved photoelectron spectroscopy.

Phys. Rev. Lett. 130, 153201 (2023)

DOI: https://doi.org/10.1103/PhysRevLett.130.153201

3, Daniel Hammerland, Thomas Berglitsch, Pengju Zhang et al, Bond-length dependence of attosecond ionization delays in O2 arising from electron correlation to shape resonances.

Science Advances, 10, eadl3810 (2024)

DOI: 10.1126/sciadv.adl3810

     4, Chuncheng Wang+, Max D.J. Waters+, Pengju Zhang+, et al, Different timescales during ultrafast stilbene           isomerization in the gas and liquid phases revealed using time-resolved photoelectron spectroscopy.

Nature Chemistry, 14, 1126–1132 (2022).

DOI: https://www.nature.com/articles/s41557-022-01012-0

5, Pengju Zhang et al, Intermolecular Coulombic Decay in Liquid Water.

Phys. Rev. Lett. 128, 133001 (2022). (Editors’ suggestion)

DOI: https://doi.org/10.1103/PhysRevLett.128.133001

6, Titouan Gadeyne, Pengju Zhang et al, Low-energy electron distributions from the photoionization of liquid water: a sensitive test of electron mean free paths.

Chem. Sci., 13, 1675-1692 (2022)

DOI: https://doi.org/10.1039/D1SC06741A

7, Conaill F. Perry, Inga Jordan, Pengju Zhang et al, Photoelectron Spectroscopy of Liquid Water with Tunable Extreme-Ultraviolet Radiation: Effects of Electron Scattering.

 J. Phys. Chem. Lett. 12, 2990-2996 (2021)

DOI: https://doi.org/10.1021/acs.jpclett.0c03424

8, Conaill F. Perry, Pengju Zhang et al, Ionization Energy of Liquid Water Revisited.

J. Phys. Chem. Lett. 11, 1789-1794 (2020)

DOI: https://doi.org/10.1021/acs.jpclett.9b03391

9, S. Yan, X. L. Zhu, S. F. Zhang, D. M. Zhao, P. Zhang et al, Enhanced damage induced by secondary high-energy electrons.

Phys. Rev. A 102, 032809 (2020).

DOI: https://doi.org/10.1103/PhysRevA.102.032809

10, D. Hammerland+, Pengju Zhang+ et al, Reconstruction of attosecond pulses in the presence of interfering dressing fields using a 100 kHz laser system at ELI-ALPS

J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 23LT01.

DOI: https://doi.org/10.1088/1361-6455/ab486c

11, Pengju. Zhang et al, Observation of indirect (e, 3e) process of CO

J. Phys. B: At. Mol. Opt. Phys. 51, 185203 (2018).

DOI:https://doi.org/10.1088/1361-6455/aad49d

12, S. Yan, P. Zhang, et al, Interatomic relaxation processes induced in neon dimers by electron-impact ionization.

Phys. Rev. A 97, 010701(R) (2018).

DOI: https://doi.org/10.1103/PhysRevA.97.010701

13, X. L. Zhu, S. Yan, W. T. Feng, X. Ma, X. Y. Chuai, D. L. Guo, Y. Gao, R. T. Zhang, P.Zhang, et al, Orientation effect in Ar dimer fragmentation by highly charged ion impact.

J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 155204.

DOI: https://doi.org/10.1088/1361-6455/aacfed

14, S. Yan, X. L. Zhu, P. Zhang et al, Observation of two sequential pathways of (CO2)3+ dissociation by heavy-ion impact.

Phys. Rev. A 94, 032708 (2016).

DOI: http://dx.doi.org/10.1103/PhysRevA.94.032708

15, S. Yan, P. Zhang et al, Dissociation mechanisms of the Ar trimer induced by a third atom in high-energy electron impact ionization.

Phys. Rev. A 89, 062707 (2014).

DOI: https://doi.org/10.1103/PhysRevA.89.062707

16, S. Yan, P. Zhang et al, Observation of interatomic Coulombic decay and electron-transfer-mediated decay in high energy electron-impact ionization of Ar2.

Phys. Rev. A 88, 042712 (2013).

DOI: https://doi.org/10.1103/PhysRevA.88.042712

17, P. Zhang et al, (e, 2e) processes on atomic targets (Ne, Ar) and molecular targets (CH4, N2, CO2): Role of electron-nucleus scattering.

Phys. Rev. A 86, 012712 (2012).

DOI: http://dx.doi.org/10.1103/PhysRevA.86.012712

18, S. Xu, X. Ma, S. Yan and P. Zhang.

Comment on “Dynamical (e, 2e) studies using tetrahydrofuran as a DNA analog” [J. Chem.

Phys. 133, 124302 (2010)].

J. Chem. Phys. 136, 237101 (2012).

DOI: https://doi.org/10.1063/1.4729370

19, D. L. Guo, X. Ma, S. F. Zhang, X. L. Zhu, W. T. Feng, R. T. Zhang, B. Li, H. P. Liu, S. C.Yan, P. J. Zhang and Q. Wang.

Angular- and state-selective differential cross sections for single-electron capture in p-He

collisions at intermediate energies.

Phys. Rev. A 86, 052707 (2012).

DOI: https://doi.org/10.1103/PhysRevA.86.052707

20, S. Yan, X. Ma, P. Zhang et al,

Signatures of the projectile electron–target core elastic scattering in Ar (e, 2e) reactions at

low and intermediate impact energies.

J. Phys. B: At. Mol. Opt. Phys. 44, 055202 (2011).

DOI: http://dx.doi.org/10.1088/0953-4075/44/5/055202

21, S. Yan, X. Ma, P. Zhang et al, Evidence of strong projectile–target-core interaction in single ionization of neon by electron impact.

 Phys. Rev. A 82, 052702 (2010).

DOI: https://doi.org/10.1103/PhysRevA.82.052702

目前的研究课题及展望


在研课题:

1,中科院物理所I类人才项目,No.24D1201LSXX。(主持)

2,国家自然科学基金面上项目,No.12474261。(主持)

2,国家自然科学基金指南引导类原创探索计划项目,No.12450401。(参与)

培养研究生情况


拟每年招收研究生(硕士,博士)1-3名(物理,化学,光学,光学工程等),研究生在学期间均有出国交流的机会。

欢迎本科生垂询,报考,实习!欢迎博士后加入! 

其他联系方式


zhangpengju@sslab.org.cn

Email


pengju.zhang@iphy.ac.cn