任新国

简介


 
    教育背景:

 

  •     1994 - 1998, 南开大学物理系,本科
  •     1998 - 2001,中科院理论物理研究所,硕士
  •     2001 - 2006,德国奥格斯堡大学物理研究所,博士

   工作经历:

 

 

  •     2006.04 - 2012.12,德国弗里兹-哈伯研究所,博士后
  •     2013.01 - 2019.10,中国科学技术大学,特任研究员
  •     2019.11  至今,中国科学院物理研究所,特聘研究员

 

主要研究方向


  1. 电子结构计算方法和算法的发展
  2. 第一性原理计算软件的开发
  3. 材料模拟计算与预测

过去的主要工作及获得的成果


  • 参与发展了基于无规相近似(RPA) 的电子系统基态能量计算方法,并推动了该方法在计算材料科学中的应用。

代表性论文及专利


  1. X. Qu, P. Xu, R. Li, G. Li, L. He, and X. Ren, “Density Functional Theory Plus Dynamical Mean Field Theory within the Framework of Linear Combination of Numerical Atomic Orbitals: Formulation and Benchmarks”, J. Chem. Theory Comput. 18, 5589 (2022).
  2. M. Tahir, T. Zhu, H. Shang, J. Li, V. Blum, and X. Ren, “Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks”, J. Chem. Theory Comput. 18, 5297 (2022).
  3. S. Yang and X. Ren, “Phase stability of the argon crystal: first-principles study based on random phase approximation plus renormalized single excitation corrections”, New J. Phys. 24, 033049 (2022).
  4. Y. Wang, P. Rinke, and X. Ren, “Assessing the G0W0Γ0(1) Approach: Beyond G0W0 with Hedin’s Full Second-Order Self-Energy Contribution”, J. Chem. Theory Comput. 17, 5140 (2021).
  5. X. Ren, F. Merz, H. Jiang, Y. Yao, M. Rampp, H. Lederer, and M. Scheffler, “All-electron periodic G0W0 implementation with numerical atomic orbital basis functions: Algorithm and benchmarks”, Phys. Rev. Mater. 5, 013807 (2021).
  6. P. Lin, X. Ren, and L. He, “Accuracy of Localized Resolution of the Identity in Periodic Hybrid Functional Calculations with Numerical Atomic Orbitals”, J. Phys. Chem. Lett. 11, 3082 (2020).
  7. Y. Gao, W. Zhu, and X. Ren, “Long-range behavior of a nonlocal correlation-energy density functional based on the random-phase approximation”, Phys. Rev. B 12, 035113 (2020).
  8.  M. N. Tahir and X. Ren, "Comparing particle-particle and particle-hole channels of the random phase approximation", Phys. Rev. B, 99, 195149 (2019).
  9. Q. Wang, D. Zheng, L. He, and X. Ren, “Cooperative Effect in a Graphite Intercalation Compound: Enhanced Mobility of AlCl4 in the Graphite Cathode of Aluminum-Ion Batteries”, Phys. Rev. Applied 12, 044060 (2019).
  10. P. Li, X. Ren, and L. He, “First-principles calculations and model analysis of plasmon excitations in graphene and graphene/hBN heterostructure”, Phys. Rev. B 96, 165417 (2017).
  11. X. Ren, N. Marom, F. Caruso, M. Scheffler and Patrick Rinke, "Beyond the GW approximation: A second-order screened exchange correction", Phys. Rev. B 92, 081104 (2015).
  12. X. Ren, P. Rinke, G. E. Scuseria, and M. Scheffler, “Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks”, Phys. Rev. B 88, 035120 (2013).
  13. X. Ren, P. Rinke, C. Joas, and M. Scheffler,  “Random-phase approximation and its applications in computational chemistry and materials science”, J. Mater. Sci. 47, 7447 (2012).
  14. X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, and M. Scheffler, “Resolution-of-identity approach to HartreeFock,hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions”, New J. Phys. 14 053020 (2012).
  15. X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, “Beyond the Random Phase Approximation: the Importance of Single excitations”, Phys. Rev.Lett., 106, 153003 (2011).
  16. X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, and D. Vollhardt, “LDA+DMFT computation of the electronic spectrum of NiO”, Phys. Rev. B 74, 195114 (2006).

 

目前的研究课题及展望


  • 密度泛函理论,特别是基于无规相近似(RPA)的先进交换关联能量泛函研究
  • 格林函数理论,特别是基于GW近似的激发态计算方法
  • 大型从头计算软件的开发

培养研究生情况


有在读研究生6名,已毕业4名。目前计划在物理所每年招收硕士、博士生1-2名。

电话


010-82649603

Email


renxg@iphy.ac.cn