李贝贝

简介


李贝贝,女,1987年生,2018年10月加入中科院物理所光物理实验室L02组(group website: http://l02.iphy.ac.cn/),特聘研究员,博士生导师。



教育经历


  • 2009/09-2014/07,北京大学,物理学院光学所,博士


       导师:肖云峰教授;Group website: http://www.phy.pku.edu.cn/~yfxiao/.


  • 2005/09-2009/07,天津大学,理学院应用物理学,学士




 工作经历


  • 2018/10-至今,中科院物理所,特聘研究员

  • 2017/09-2018/10, 2014/11-2016/10, 昆士兰大学(澳大利亚),博士后


      获得University of Queensland Postdoctoral Research Fellowship. Supervisor: Prof. Warwick Bowen. Group website: http://www.physics.uq.edu.au/QOlab/.


  • 2016/11-2017/08, 2014/08-2014/10,航天五院钱学森空间技术实验室,助理研究员


主要研究方向


回音壁模式光学微腔;微纳光子学;光学微腔传感;高灵敏度磁力仪;微腔光力学;微腔激光器



回音壁模式光学微腔:通过光的全反射将光子局域在封闭的环形结构内,且光子循环一周的光程满足共振条件,这种模式叫做光学回音壁模式。局域这种模式的微腔叫做回音壁模式光学微腔。由于其极高的品质因子与较小的模式体积,可以大大增强光与物质相互作用的强度,因此已在基础物理与应用研究的许多方面得到了重要应用,例如微腔光力学、腔量子电动力学、非线性光学、微型激光器、高灵敏度传感等方面。我们实验室实现的芯片上微芯圆环腔(microtoroid)的光学品质因子可高达108



高灵敏度传感:由于光是靠全内反射将光子局域在微腔中,因此微腔外部有隐逝场,这部分隐逝场不仅提供了一个微腔与外界波导耦合的渠道,同时也可以用来传感,例如,当生物分子或纳米颗粒被吸附在微腔表面的时候,可以与隐逝场发生相互作用,而造成光学共振模式的移动,分裂,或展宽,这些均可以作为传感的信号。



高灵敏度磁力仪(magnetometry):微腔本身不仅支持光学共振模式,同时也是机械振子。通过将磁致伸缩材料与微腔结合,磁致伸缩材料在磁场作用下发生伸缩,造成微腔的形变,从而造成微腔光学共振模式的移动。在这个光力耦合的体系中,交变磁场通过磁致伸缩效应引起的形变由于机械共振而被放大,而其光学读出信号也由于光学共振而被增强。这种光学与机械的双共振效应使得微腔光力学磁力仪对交变磁场具有极高的灵敏度。此外,由于微腔本身自然的支持多个机械共振模式,因此在很宽的频段上(从直流到百MHz)都具有很高的灵敏度,有望同时满足军用和民用上多方面的应用需求。因此,可以说微腔光力学磁力仪是一种常温工作、高灵敏、高带宽、低功耗、尺寸小、可集成于芯片的磁力仪。




 

过去的主要工作及获得的成果


研究工作一直集中在高品质因子光学微腔及其应用,包括微腔传感与微腔激光,高灵敏度磁力仪,微腔光力学等方面。已在Proc. Natl. Acad. Sci., Optica, Adv. Mater., Phys. Rev. Lett., Appl. Phys. Lett., Opt. Lett.等高水平学术期刊上发表论文27篇以及学术专著一篇,引用超过1600次。研究成果入选“2014年度中国高校十大科技进展”。受邀为Phys. Rev. Lett., Optica, Light: Sci. App., Laser&Photonics Reviews, Opt. Lett. Opt. Express, Appl. Phys. Lett., Photonics Research等期刊的审稿人。 2019年获得“饶毓泰基础光学奖”



主要研究工作集中在以下几个方面:



1.   基于光学微腔的高灵敏度单个纳米颗粒检测:首次提出利用微腔拉曼激光的模式分裂的探测机制实现高灵敏度单个纳米粒子检测,达到了20 nm的检测极限(Proc. Natl. Acad. Sci. 111, 14657 (2014),引用达到179次)。



2.   基于纳米光纤阵列的高灵敏度单个纳米颗粒检测:首次利用纳米光纤阵列在液体环境中实现了高灵敏单粒子检测(Adv. Mater. 26, 7462 (2014))。并利用纳米光纤阵列实现空气环境中PM2.5颗粒的检测,对粒子尺寸的分辨率达到10 nm (Light: Sci. App. 7, 18003 (2017))。 



3.   基于芯片上光力微腔的高灵敏度磁力仪:通过将磁致伸缩材料与微腔结合,实现了片上集成的,常温下工作的高灵敏度磁力仪,灵敏度达到26.5 pT/Hz1/2,与同等尺寸的超导量子干涉器件相当,但无需低温环境(Photonics Research 8, 1064 (2020));利用磁控溅射法制备磁致伸缩材料薄膜,实现了可批量制备、重复性好的磁力仪制备方法(APL Photon. 3, 120806 (2018));利用具有量子关联的压缩光来降低磁力仪体系中的来自激光的散粒噪声,从而提高磁力仪的灵敏度和带宽 (Optica 5, 850 (2018)。 



4.   基于二氧化硅/聚合物复合光学微腔的研究:通过将聚合物材料PDMS覆盖在二氧化硅微腔表面,实现高灵敏度温度传感(App. Phys. Lett. 96, 251109 (2010));并实现了聚合物微腔的低阈值拉曼激光(Raman lasing) (Opt. Lett. 38, 1802 (2013))。 



5.   光学微腔体系中的电磁感应透明/Fano共振: 研究了单个微腔中不同模式耦合形成的Fano共振(Appl. Phys. Lett. 98, 021116 (2011));研究了耦合微腔体系中来自不同的微腔的模式相互耦合形成的可调的Fano共振(Appl. Phys. Lett. 100, 021108 (2012));研究了微腔体系中的电磁感应透明(electromagnetically induced transparency, EIT)现象(Nanophotonics 6, 789 (2017))。



 

代表性论文及专利


Google scholar page: https://scholar.google.com/citations?user=m5aYHRIAAAAJ&hl=en



Journal Publications:



1.          Bei-Bei Li, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, Warwick P. Bowen*, “Ultra-broadband and sensitive cavity optomechanical magnetometry”, Photonics Research 8, 1064 (2020). 



2.          Bei-Bei Li#, Jan Bilek#, Ulrich Hoff, Lars Madsen, Stefan Forstner, Varun Prakash, Clemens Schäfermeier, Tobias Gehring, Warwick P. Bowen*, and Ulrik L. Andersen* (#: equal contribution), “Quantum enhanced optomechanical magnetometry,” Optica 5(7), 850-856 (2018). 



3.          Bei-Bei Li, Douglas Bulla, Varun Prakash, Stefan Forstner, Ali Dehghan-Manshadi, Halina Rubinsztein-Dunlop, Scott Foster, and Warwick P. Bowen*, “Scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photonics 3(12), 120806 (2018). Science highlight article: https://aip.scitation.org/doi/10.1063/1.5086075. Featured on the cover of APL Photonics.



4.          Yong-Chun Liu*, Bei-Bei Li* (corresponding author), and Yun-Feng Xiao*, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789 (2017). 



5.          William R. Clements#Bei-Bei Li# (co-first author), Bo-Qiang Shen, and Yun-Feng Xiao* (#: equal contribution), “Raman-lasing dynamics in split-mode microresonators,” Phys. Rev. A 91(1), 013804 (2015) 



6.          Bei-Bei Li, William R. Clements, Xiao-Chong Yu, Kebin Shi, Qihuang Gong, and Yun-Feng Xiao*, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111(41), 14657-14662 (2014). Highlighted in Phys. orgAsian Scientist, and AZO nano.



7.          Xiao-Chong Yu+Bei-Bei Li+ (co-first author), Pan Wang, Limin Tong, Xue-Feng Jiang, Yan Li, Qihuang Gong, and Yun-Feng Xiao* (+: equal contribution), “Single nanoparticle detection in aqueous environment using a nanofiber pair,” Adv. Mater. 26(44), 7462-7467 (2014). Front cover paper, highlighted in Materials ViewsAZO nano. 



8.          Bei-Bei Li, Yun-Feng Xiao*, Meng-Yuan Yan, William R. Clements, and Qihuang Gong*, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38(11), 1802-1804 (2013).  



9.          Bei-Bei Li, Yun-Feng Xiao*, Chang-Ling Zou, Xue-Feng Jiang, Yong-Chun Liu, Fang-Wen Sun, Yan Li, and Qihuang Gong*, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2) 021108 (2012). 



10.       Bei-Bei Li, Yun-Feng Xiao*, Chang-Ling Zou, Yong-Chun Liu, Xue-Feng Jiang, You-Ling Chen, Yan Li, and Qihuang Gong*, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98 (02), 021116 (2011).  



11.       Bei-Bei Li#, Qing-Yan Wang#, Yun-Feng Xiao*, Xue-Feng Jiang, Yan Li, Lixin Xiao, and Qihuang Gong (#: equal contribution),“On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).  



12.       唐水晶,李贝贝,肖云峰,“回音壁模式光学微腔传感”,物理 48, 137-147 (2019). 



13.       Wei-Liang Jin, Xu Yi*, Yi-Wen Hu, Bei-Bei Li* (corresponding author), and Yun-Feng Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52(2), 155-161 (2013).  



14.       Zhou-Chen Luo, Cao-Yuan Ma, Bei-Bei Li* (corresponding author), and Yun-Feng Xiao*, “MHz-level self-sustained pulsation in polymer microspheres on a chip,” AIP Advances 4, 122902 (2014). Invited paper. 



15.       Yi-Wen Hu, Bei-Bei Li, Yi-Xiang Liu, Yun-Feng Xiao*, Qihuang Gong*, “Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping,” Opt. Comm. 291, 380-385 (2013). 



16.       Yun-Feng Xiao*, Bei-Bei Li, Xiaoshun Jiang, Xiaoyong Hu, Yan Li, and Qihuang Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B: At. Mol. Opt. Phys. 43, 035402 (2010).  



17.       Yun-Feng Xiao*, Yong-Chun Liu*, Bei-Bei Li, You-Ling Chen, Yan Li, and Qihuang Gong*, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A (Rap. Comm.) 85(3), 031805(R) (2012).  



18.       Yong-Chun Liu, Yun-Feng Xiao*, Bei-Bei Li, Xue-Feng Jiang, Yan Li, and Qihuang Gong*, “Coupling of a Single Diamond Nanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefitting from Rayleigh Scattering,” Phys. Rev. A (Rap. Comm.) 84, 011805(R) (2011).  



19.       Yun-Feng Xiao*, Chang-Ling Zou, Bei-Bei Li, Yan Li, Chun-Hua Dong, Zheng-Fu Han, and Qihuang Gong*, “High-Q exterior whispering gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).  



20.       Linbo Shao, Xue-Feng Jiang, Xiao-Chong Yu, Bei-Bei Li, William R. Clements, Frank Vollmer, Wei Wang, Yun-Feng Xiao*, and Qihuang Gong*, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616-5620 (2013).  Frontispiece paper, Highlighted in materialsviews.commaterialsviewschina.com. 



21.       Xiao-Chong Yu, Yanyan Zhi, Shui-Jing Tang, Bei-Bei Li, Qihuang Gong, Cheng-Wei Qiu, and Yun-Feng Xiao*, “Optically sizing single atmospheric particlulates with a 10-nm resolution using strong evanescent field”, Light: Sci. App. 7, 18003 (2018).  



22.       Xu Yi, Yun-Feng Xiao*, Yong-Chun Liu, Bei-Bei Li, You-Ling Chen, Yan Li, and Qihuang Gong*, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83(02), 023802 (2011).  



23.       Zhao-Pei Liu, Yan Li, Yun-Feng Xiao, Bei-Bei Li, Xue-Feng Jiang, Yi Qin, Xiao-Bo Feng, Hong Yang, and Qihuang Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).  



24.       Yong-Chun Liu, Yun-Feng Xiao*, Xue-Feng Jiang, Bei-Bei Li, Yan Li, and Qihuang Gong*,“Cavity-QED treatment of scattering-induced free-space excitation and collection in high-Q whispering-gallery microcavities,” Phys. Rev. A 85(01), 013843 (2012). 



25.       Xu Yi, Yun-Feng Xiao*, Yan Li, Yong-Chun Liu, Bei-Bei Li, Zhao-Pei Liu, and Qihuang Gong*, “Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator,” Appl. Phys. Lett. 97(20), 203705 (2010). 



26.       Christiaan Bekker, Christopher G. Baker*, Rachpon Kalra, Han-Hao Cheng, Bei-Bei Li, Varun Prakash, and Warwick P. Bowen, “Free spectral range electrical tuning of a high quality on-chip microcavity”, Opt. Express 26(26), 33649-33670 (2018)). 



27.       Xue-Feng Jiang, Yun-Feng Xiao*, Chang-Ling Zou, Lina He, Chun-Hua Dong, Bei-Bei Li, Yan Li, Fang-Wen Sun, Lan Yang, and Qihuang Gong*, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012). Highlighted in materialsviews.comOptik & Photonik, and Optics and Photonics News.  



Book chapters:



1.          Bei-Bei Li, Xiao-Chong Yu, Yi-Wen Hu, William R. Clements, and Yun-Feng Xiao*,“Highly sensitive sensing with high-Q whispering gallery microcavities,” A book chapter in “Handbook of Photonics for Biomedical Engineering”, Springer Press (2016).



 

目前的研究课题及展望




目前主持以下项目:



1. 中科院物理所启动经费。



2. 国家自然科学基金青年项目,“基于芯片上光力微腔磁力仪的研究”,2018.01-2020.12。



3. 国家自然科学基金“光场调控”重大研究计划培育项目,“双盘光学微腔的磁光调控及其磁场传感应用研究”,2020.01-2022.12。



4. 中科院基础前沿科学研究计划“从0到1”原始创新项目(十年择优),“基于片上集成光学微腔的低频段高灵敏磁力仪”,2019.09-2029.08。




 

培养研究生情况


每年拟招收硕博连读生或博士生2~3名,欢迎具有物理或光学专业背景的考生联系报考,在读学生将有出国学习和访问的机会;此外,拟招收具有物理或光学背景的博士后1-2名。



 

其他联系方式


libeibei@iphy.ac.cn

办公室:M934

电话:

010-82649384

010-82649465

010-82649465

Email

libeibei@iphy.ac.cn