陆雅翔

简介


2012.09-2015.12     英国伯明翰大学获得博士学位  

2015.10-2016.11     英国萨里大学从事博士后研究

2017.02-2018.03     中国科学院物理研究所“国际青年学者计划”

2018.04 至今           中国科学院物理研究所副研究员,在E01组工作

2020年                    入选中国科学院青年创新促进会

主要研究方向


新能源材料与器件研究,包括:

1) 低成本、高容量、高倍率钠离子电池负极材料研究;

2) 电极/电解质界面性质及离子传输机制研究;

3) 高安全、高能量密度水系电池研究。

过去的主要工作及获得的成果


主要从事清洁能源转换与存储器件(燃料电池、二次电池)领域的研究工作,在制备无机材料和碳基材料、探索材料成核与生长机制、揭示电荷载体存储机理、阐明微观结构与宏观性能关系等方面取得了一些进展,主要工作如下:

1) 提出新型预氧化方法制备高容量碳负极材料。引入氧原子产生交联结构,抑制沥青在高温碳化过程中的熔化,阻碍碳原子有序重排,使碳负极材料产碳率从54%提高到67%,储钠容量从94 mAh/g增加到300 mAh/g,初始库仑效率从64.2%提升到88.6%;该方法对其他碳源的预处理具有普适性。

2) 运用低温碳化技术提高碳负极材料倍率性能。低温碳化提高了沥青基碳材料的缺陷浓度,增加了储钠活性位点,使斜坡区容量得到提升,为高功率钠离子电池的开发提供新思路。

3) 揭示碳负极多孔结构对储钠性能的作用规律。借助多种孔结构表征技术,结合非原位测试方法,区分多孔碳负极开孔和闭孔的孔隙率、孔面积、孔径大小及分布,发现增加闭孔数量并减少开孔数量是实现高首效、高容量碳负极的有效方法。

4) 基于绿色化学方法调控碳负极材料闭合孔隙结构。通过溶剂热合成与高温碳化相结合制备出富含闭合孔的碳负极材料,将储钠容量提升至410 mAh/g,首周库仑效率为84%,可大幅提升钠离子电池的能量密度。

5) 运用超低盐浓度电解液拓宽钠离子电池工作温度范围。低盐浓度电解液改善了界面浸润性,降低了对电极和集流体的腐蚀风险,所形成的富含有机成分的界面膜具有优异的热/动力学性能,提高了钠离子电池极端温度环境下的运行稳定性。

6) 构建高能量密度、长寿命水系钾离子原型电池。通过对普鲁士蓝类正极材料进行掺杂改性,利用聚合物负极材料在水系电解液中的稳定性,结合高盐浓度电解液对电压窗口的拓宽,首次成功构筑能量密度为80 Wh/kg,循环寿命2000次以上的水系钾离子原型电池。

代表性论文及专利


[1] Y.Q. Li#, Y. Yang#, Y.X. Lu*, Q. Zhou, X.G. Qi, Q.S. Meng, X.H. Rong, L.Q. Chen, Y.-S. Hu*, Ultralow-concentration electrolyte for Na-ion batteries, ACS Energy Letters 5 (2020) 1156-1158.

[2] Y.R. Qi, Y.X. Lu*, L.L. Liu, X.G. Qi, F.X. Ding, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu*, Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization, Energy Storage Materials 26 (2020) 577-584.

[3] C.L. Zhao, Y.X. Lu*, L.Q. Chen, Y.-S. Hu*, Flexible Na batteries, InfoMat 2 (2020) 126-138.

[4] L.W. Jiang, Y.X. Lu*, C.L. Zhao, L.L. Liu, J.N. Zhang, Q.Q. Zhang, X. Shen, J.M. Zhao, X.Q. Yu, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu*, Building aqueous K-ion batteries for energy storage, Nature Energy 4 (2019) 495-503.

[5] Y.Q. Li, Y.X. Lu*, P. Adelhelm*, M.M. Titirici*, Y.-S. Hu*, Intercalation chemistry of graphite: alkali metal ions and beyond, Chemical Society Reviews 48 (2019) 4655-4687.

[6] Y.R. Qi, Y.X. Lu*, F.X. Ding, Q.Q. Zhang, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu*, Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries, Angewandte Chemie International Edition 58 (2019) 4361-4365.

[7] Y.Q. Li, Y.X. Lu*, Q.S. Meng, A.C.S. Jensen, Q.Q. Zhang, Q.H. Zhang, Y.X. Tong, Y.R. Qi, L. Gu, M.M. Titirici, Y.-S. Hu*, Regulating pore structure of hierarchical porous waste cork‐derived hard carbon anode for enhanced Na storage performance, Advanced Energy Materials 9 (2019) 1902852.

[8] Y.H. Zheng, Y.X. Lu*, X.G. Qi, Y.S. Wang, L.Q. Mu, Y.M. Li, Q. Ma, J. Li*, Y.-S. Hu*, Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode, Energy Storage Materials 18 (2019) 269-279.

[9] Q.S. Meng, Y.X. Lu*, F.X. Ding, Q.Q. Zhang, L.Q. Chen, Y.-S. Hu*, Tuning Closed Pore Structure of Hard Carbons with Highest Na Storage Capacity, ACS Energy Letters 4 (2019) 2608-2612.

[10] Y.X. Lu, X.H. Rong, Y.-S. Hu, H. Li*, L.Q. Chen, Research and development of advanced battery materials in China, Energy Storage Materials 23 (2019) 144-153.

[11] Y.X. Lu, C.L. Zhao, X.G. Qi, Y.R. Qi, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu*, Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance, Advanced Energy Materials 8 (2018) 1800108.

[12] C.L. Zhao, Q.D. Wang, Y.X. Lu*, B.H. Li, L.Q. Chen, Y.-S. Hu*, High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau, Science Bulletin 63 (2018) 1125–1129.

[13] F.X. Wu, C.L. Zhao, S.Q. Chen, Y.X. Lu*, Y.L. Hou*, Y.-S. Hu, J. Maier, Y. Yu*, Multi-electron reaction materials for sodium based batteries, Materials Today 21(2018), 960-973.

[14] C.L. Zhao, L.L. Liu, X.G. Qi, Y.X. Lu*, F.X. Wu, X.H. Rong, J.M. Zhao, Y. Yu*,Y.-S. Hu*, L.Q. Chen, Solid-state sodium batteries, Advanced Energy Materials 8 (2018) 1703012.

[15] Y.X. Lu, R. Steinberger-Wilckens, S.F. Du*, Evolution of gas diffusion layer structures for aligned Pt nanowire electrodes in PEMFC applications, Electrochimica Acta 279 (2018) 99-107.

[16] Q.D. Wang, C.L. Zhao, Y.X. Lu*, Y.M. Li, Y.H. Zheng, Y.R. Qi, X.H. Rong, L.W Jiang, X.G Qi, Y.J. Shao, D. Pan, B.H. Li*, Y.-S. Hu*, L.Q. Chen, Advanced nanostructured anode materials for sodium-ion batteries, Small 13 (2017) 1701835.

[17] Y.X. Lu, L.Q. Wang, K. Preuß, M. Qiao, M.-M. Titirici*, J. Varcoe, Q. Cai*, Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells, Journal of Power Sources 372 (2017) 82-90.

[18] Y.X. Lu, S.F. Du*, R. Steinberger-Wilckens, One-dimensional nanostructured electrocatalysts for polymer electrolyte fuel cells--a review, Applied Catalysis. B: Environmental 199 (2016) 292-314.

[19] Y.X. Lu, S.F. Du*, R. Steinberger-Wilckens, Three-dimensional catalyst electrodes based on PdPt nanodendrites for oxygen reduction reaction in PEFC applications, Applied Catalysis. B: Environmental 187 (2016) 108-114.

[20] Y.X. Lu, S.F. Du*, R. Steinberger-Wilckens, Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells, Applied Catalysis. B: Environmental 164 (2015) 389-395.

目前的研究课题及展望


主持的科研项目:国家自然科学基金面上项目,北京市自然科学基金面上项目,中科院“青促会”人才基金项目,企业前瞻性战略研发项目等。

参加的科研项目:国家自然科学基金国际(中英)合作研究项目,北京市自然科学基金重点研究专题,中国科学院战略性先导科技专项等。

目前重点开展先进二次电池关键材料、界面性质及器件研发,主要关注非水钠离子电池和水系钠、钾离子电池体系。

培养研究生情况


计划每年招收硕博连读生/博士生1-2名,欢迎具有材料、物理、化学、电化学等相关专业背景且有志科研的考生报考。

其他联系方式


办公室:M楼301

电话:   010-82649534

Email

yxlu@iphy.ac.cn