曹乘榕

简介:
2011年7月,山东大学,物理学学士学位;
2014年7月,中科院物理所,材料工程硕士学位;
2018年1月,中科院物理所,凝聚态物理博士学位;
2018年4月至2022年7月,美国威斯康辛大学麦迪逊分校,材料科学与工程研究中心博士后;
2022年8月至今,中科院物理所长三角物理研究中心工作,任副研究员,博士生导师,先进金属材料器件公共技术平台、科学家工作室负责人。
主要研究方向:
1. 非晶态合金表面与低维动力学测量;2. 新型合金材料表面构筑方法与微纳米结构制备研发;3. 低维非晶材料制备与性能表征;4. 特种非晶态合金(如超稳非晶合金薄膜)制备原理与工艺研发; 5. 金属表面处理和外场调控高通量镀膜装置的设计与搭建;6. 高性能合金薄膜产业化应用研发。
过去的主要工作及获得的成果:
1. 对非晶合金表面与低维动力学采用原创性观测手段进行测量与表征,验证了晶体与非晶,非晶表面与非晶块体之间的动力学差异。Applied Physics Letters 107, 141606 (2015);Scripta Mater 136, 68 (2017);Nature communications, 10, 1 (2019); Applied Physics Letters 116, 231601 (2020); J. Appl. Phys. 129, 165303 (2021);Physical Review Letters 128 (7), 075501 (2022)。
2.利用表面动力学与案例研发了低维非晶合金薄膜与亚稳新型纳米材料构筑方法。Applied Physics Letters 105, 011909 (2014);Applied Physics Letters 105, 051901 (2014); Intermetallics 74, 31 (2016);Journal of Applied Physics 119, 014305 (2016);Physical Review Letters 118, 016101 (2017)。
3.借助薄膜制备工艺技术开发出特种非晶合金以及非晶合金薄膜与表面功能应用研发。Advanced Materials 28, 10293 (2016);Applied Physics Letters 110, 031901 (2017);Applied Physics Letters 111, 121906 (2017);Nature Communication 9:1389 (2018) ; Nano Research 12, 2808 (2019);Physical Review Materials 5, 033602 (2021);Science Bulletin 66 (13), 1312 (2021)。
4.非晶材料的玻璃转变调控与研究。Materials and Design 60, 576 (2014); Applied Physics Letters 110, 031901 (2017);Nature Communication 9:1389 (2018) ;Physical Review Materials 5, 033602 (2021);Applied Sciences 11, 7652 (2021);The Journal of Chemical Physics 157, 7 (2022)。
代表性论文及专利:
1. C. R. Cao, W. Tang and J. H. Perepezko, Liquid-Liquid Transition Kinetics in D-Mannitol, The Journal of Chemical Physics 157, 7 (2022)
2. C. R. Cao, L. Yu, and J. H. Perepezko, Surface dynamics measurement on a gold based metallic glass, Applied Physics Letters 116, 231601 (2020)
3. C. R. Cao, K. Q. Huang, J. A. Shi D. N. Zheng, W. H. Wang, L. Gu and H. Y. Bai, Liquid-like behaviours of metallic glassy nanoparticles at room temperature, Nature communications, 10, 1 (2019)
4. C. R. Cao, Y. M. Lu, H. Y. Bai, and W. H. Wang, High surface mobility and fast surface enhanced crystallization of metallic glass, Applied Physics Letters 107, 141606 (2015)
5. C. R. Cao, K. Q. Huang, N. J. Zhao, Y. T. Sun, H. Y. Bai, L. Gu, D. N. Zheng, and W. H. Wang, Ultrahigh stability of atomically thin metallic glasses, Applied Physics Letters 105, 011909 (2014)
6. C. R. Cao, D.W. Ding, D.Q. Zhao, E. Axinte, H.Y. Bai, W.H. Wang, Correlation between glass transition temperature and melting temperature in metallic glasses, Materials and Design 60, 576 (2014)
7. L. Chen*, C. R. Cao*, J. A. Shi, Z. Lu, Y. T. Sun, P. Luo, L. Gu, H. Y. Bai, M. X. Pan, and W. H. Wang, Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth, Physical Review Letters 118, 016101 (2017) (co-first author)
8. K. Q. Huang*, C. R. Cao*, Y. T. Sun*, J. Li, H. Y. Bai, L. Gu, D. N. Zheng, and W. H. Wang, Direct observation of atomic-level nucleation and growth processes from an ultrathin metallic glass films, Journal of Applied Physics 119, 014305 (2016) (co-first author)
9. Y. T. Sun*, C. R. Cao*, K. Q. Huang*, N. J. Zhao, L. Gu, D. N. Zheng, and W. H. Wang, Understanding glass-forming ability through sluggish crystallization of atomically thin metallic glassy films, Applied Physics Letters 105, 051901 (2014) (co-first author)
10. M. Gao, C. Cao, and J. H. Perepezko, Analysis of Nucleation and Glass Formation by Chip Calorimetry, Applied Sciences 11, 7652 (2021).
11. S. V. Muley, C. R. Cao, D. Chatterjee, C. Francis, F. P. Lu, M. D. Ediger and P. M. Voyles, Varying kinetic stability, icosahedral ordering, and mechanical properties of a model Zr-Cu-Al metallic glass by sputtering. Physical Review Materials 5, 033602 (2021).
12. P. Luo, C. R. Cao, F. Zhu, Y.M. Lv, Y.H. Liu, P. Wen, H.Y. Bai, G. Vaughan, M. di Michie, B. Ruta, W.H. Wang, Ultrastable metallic glasses formed on cold substrates, Nature Communication 9:1389 (2018)
13.J. A. Shi, C. R. Cao, Q. H. Zhang, Y. T. Sun, C. Wang, W. H. Wang, H. Y. Bai, L. Gu, In situ atomic level observations of Al2O3 forming on surface of metallic glasses. Scripta Mater 136, 68 (2017)
14. M. Liu, C. R. Cao, Y. M. Lu, W. H. Wang, H. Y Bai, Flexible amorphous metal films with high stability, Applied Physics Letters 110, 031901 (2017)
15. H. J. Xian, C. R. Cao, J. A. Shi, Y. F. Huang, X. S. Zhu, L. G, H. Y. Bai, W. H. Wang, Flexible strain sensors with high performance based on metallic glass thin film, Applied Physics Letters 111, 121906 (2017)
16. Y. T. Sun, C. R. Cao, K. Q. Huang, J. A. Shi, L. Z. Zhao, M. Z. Li, H. Y. Bai, L. Gu, D. N. Zheng, W. H. Wang, Real-space imaging of nucleation and size induced amorphization in PdSi nanoparticles, Intermetallics 74, 31 (2016)
17. H. Y. Jiang, J. Li, C. R. Cao, X. Liu, M. Liu, Y. Shen, and B. A. Sun, Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced Raman scattering. Nano Research 12, 2808 (2019).
18. K.L. Ngai, S. Capaccioli, C.R. Cao, H.Y. Bai, W.H. Wang. Quantitative explanation of the enhancement of surface mobility of the metallic glass Pd40Cu30Ni10P20 by the Coupling Model. Journal of Non-Crystalline Solids 463, 85-89 (2017).
19. Y. M. Lu, X. Liu, B. A. Sun, C. R. Cao, M. X. Pan, C. T. Liu, W. H. Wang, Y. Yang, and H. Y. Bai. Fast mobility induced self-lubrication at metallic glass surface J. Appl. Phys. 129, 165303 (2021).
20. Y. C. Hu, Y. Z. Wang, R. Su, C. R. Cao, F. Li, C. W. Sun, Y. Yang, P. F. Guan, D. W. Ding, Z. L. Wang, and W. H. Wang, A Highly Efficient and Self-Stabilizing Metallic-Glass Catalyst for Electrochemical Hydrogen Generation, Advanced Materials 28, 10293 (2016)
21. Y. H. Li, A. Annamareddy, D. Morgan, Z. Yu, B. Wang, C. R. Cao, J. H. Perepezko, M. D. Ediger, P. M. Voyles and L. Yu, Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types, Physical Review Letters 128 (7), 075501 (2022).
22. H. Y. Jiang, J. Y. Xu, Q. H. Zhang, Q. Yu, L. Q. Shen, M. Liu, Y. T. Sun, C. R. Cao, D. Su, H. Y. Bai, S. Meng, B. A. Sun, L. Gu, W. H. Wang, Direct observation of atomic-level fractal structure in a metallic glass membrane, Science Bulletin 66 (13), 1312 (2021).
23. 咸海杰; 曹乘榕; 赵德乾; 丁大伟; 潘明祥; 白海洋; 汪卫华 ; 柔性电阻式应变传感器, 2017-1-19, 中国, ZL201710044432.6 (专利)
目前的研究课题及展望:
基础研究方面:
基于过去对非晶表面动力学研究,设计搭建多维度外场调控高通量薄膜沉积系统,同时发展高通量结构、成分与性能等表征手段,建立相应的数据库。原理方面,以合金表面与薄膜低维动力学基本参数的高通量测量为基础,研究在衬底约束的边界条件下非晶薄膜的生长模式、形貌结构、界面效应等重要薄膜制备的基本原理,有针对性地为高性能合金薄膜沉积技术提供理论支撑,建立一套独立完整的亚稳态合金动力学研究体系与理论模型,为未来亚稳态或非晶材料物理基础理论研究开辟全新的探究途径。应用方面,通过构建多维度调控、性能优化与高通量筛选的先进材料制备方法,提升材料基因组项目应用研发与产业转化能力,可根据产业需求有针对性地从制备原理出发快速高效研发并筛选具备指定性能指标的新型合金应用材料,为我国在新型先进合金开发、优化和应用方面提供坚实的技术和数据储备。
产业研发方面:
先进金属材料器件公共技术平台隶属于长三角物理研究中心,依托于中国科学院物理研究所及其子平台的相关科研发展,致力于通过产学研协同推动科技创新成果转化及产业化,支撑产业向中高端迈进,实现高质量发展。平台以新型金属材料和器件智能制造先进技术开发和成果转移转化为核心使命,围绕能源、信息、尖端仪器、智能装备等行业对先进金属材料的需求,致力于开发新一代先进金属材料、器件和相关技术,突破现有技术瓶颈,实现金属器件的智能制造和智能开发。先进金属材料器件公共技术平台聚焦华东地区企业对金属器件的关键技术需求,为区域和产业发展提供源头技术供给,为科技型中小企业孵化、培育和发展提供创新服务,包括技术支持、技术开发、智能制造、测试分析等,为企业遇到的技术难题提供解决方案。平台占地4000平方米,针对先进金属材料器件研发已建成完备的技术平台,包括扫描电子显微镜、万能力学试验机、数控机床、调制高低温差热分析仪、B-H测试仪等完备的力学、磁学、热学、电学、组织结构表征设备以及金属器件加工设备,并已就高效低能耗铁芯材料和器件,先进压力传感器关键器件,地暖加热带关键材料与器件和高端医疗器械与设备等与多家企业建立深度合作。
电话:
010-62553698
Email: