索鎏敏
简介:
研究员,博士生导师。2013年中国科学院物理研究所获理学博士学位, 曾先后在在美国马里兰大学, 美国麻省理工学院从事博士后研究工作,2017年入职中国科学院物理研究所,任特聘研究员,2021年,任研究员。主要从事针对储能和动力需求场景下的新型电池基础研究与开发工作,近年来发表SCI论文共计 85篇 (IF >10, 62篇),申请发表专利35 项。通讯/一作身份发表研究类论文 50 篇,包括Science、Nature Energy/Nature Chemistry(2 篇)、Nat. Commun./Sci. Adv./PNAS(7篇)、Adv.Mater/Angew/JACS (12 篇)等。文章发表以来 SCI 引用次数大于 16000 次 ,其中 98 %源于研究类论文贡献,60 %以上源于通讯/第一作者论文贡献,H因子 54
主要研究方向:
新型电池体系基础研究与开发:
(1)新型电解液体系探索开发与基础科学问题研究
(2)本质安全的高电压水系锂离子储能电池
(3)高能量密度金属锂基动力电池(硫基金属锂电池/无负极金属锂电池)
过去的主要工作及获得的成果:
1. 面向下一代电池的新型电解液基础研究与开发
(1)宽电位水系电解液(高电压水系锂/钠离子储能电池)
将水系电解液电化学窗口由低于2 V提高至3.0V, 为实现高安全、长寿命、低成本高电压水系锂/钠离子电池提供了必要前提。 在水系电解液中首次实现SEI膜, 推翻前人对水系锂电池无法形成SEI膜的认识,从根本上解决了水系二次电池“析氢问题”导致的循环寿命低的关键技术难题。将水系电池输出电压由 < 1.5 V提高至 > 2 V 。
a. 锂基Water-in-Salt电解液 (Science, 2015 / Angew. Chem. Int. Edit. , 2016)
b. 水系SEI膜形成机制与精确调控技术 (Nature Chemistry,2021 / JACS 2017)
d. 钠基Water-in-salt电解质 (Adv. Energ. Mater. 2017 / Adv. Mater. 2020)
f. Water-in-salt 离子输运机制研究 (ACS Nano, 2017 / JPCC,2021)
g. Water-in-salt 抑制电极溶解机制研究 (Adv.Energ. Mater. 2020)
(2)超高盐浓度电解液 (高能量密度金属锂基动力电池)
提出高盐浓度电解质稳定金属锂负极想法,为提高金属锂循环稳定性和抑制锂枝晶提供了一种全新解决思路。将高盐浓度电解液用于锂硫电池同时解决了多硫离子溶解和稳定金属锂负极两项关键技术难题。提出全氟超高盐浓度高电压5 V电解液,可以同时实现稳定金属锂负极和高电压正极材料,实现5V高能量密度金属锂电池。
a. 金属锂基用Solvent-in-Salt新型双功能电解质 (Nat. Commun., 2013)
b. 提出高能量密度金属锂电池用5V全氟电解液体系 (PNAS, 2018 )
(3)超轻电解液 (高能量密度锂-硫电池)
a. 提出超轻电解液提高锂硫电池全电池能量密度> 20 % (Angew, 2021)
b. 提出氟硅基超轻电解液在提高锂硫电池能量密度的条件下实现锂负极深度循环的长寿命(Adv.Mater. 2021)
2. 高电压水系锂离子/钠离子储能电池
以新型宽电位窗口水系电解液为突破后,针对高比例可再生能源消纳和智能电网等对大规模储能重大需求研究开发本质安全绿色、长寿命、低成本的高电压水系锂/钠储能电池。
(1)高电压水系锂离子储能电池
- 2015年,2.3 V 水系锂离子电池(LiMn2O4/Mo6S8)
- 2016年,2.5 V 水系锂离子电池(LiMn2O4/TiO2)
- 2021年,2.8 V 水系锂离子电池 (LiMn2O4/TiO2(B))
(2)高电压水系钠离子储能电池
- 2017年,1.7 V 水系钠离子电池 (Na0.66[Mn0.66Ti0.34]O2/NaTi2(PO4)3)
- 2020年,2.6 V 水系钠离子电池 (NaMnHCF//NaTiOPO4)
3. 500Wh/kg 锂-硫动力电池
(1)锂硫电池用电解液
- 高盐浓度Solvent-in-Salt双功能电解质 (Nat. Commun., 2013 )
- 提出一系列超轻电解液提高锂硫电池全电池能量密度和循环寿命 (Angew, 2021,Adv.Mater. 2021)
(2)锂硫正极
- 提出嵌入-转化混合硫正极实现高体积和能量密度锂硫电池 (Nature Energy, 2019)
(3)隔膜
- 开发了一种高电子-离子电导电化学活性多功能隔膜涂层用于锂硫电池 (Matter, 2019)
4. 400 Wh/kg 无负极金属锂动力电池
(1)正极:
- 开发富锂层状三元正极材料提升高能量密度无负极金属锂电池循环寿命 (Angew, 2021)
- 开发无钴富锂高电压尖晶石5V正极提高高能量密度无负极金属锂电池循环寿命 (EnSM, 2021)
(2)负极集流体
- 提出液态金属涂层集流体诱导外延锂沉积实现无负极锂金属电池长寿命 (AEM, 2021)
(3)体系优势阐释
- 阐明无负极金属锂电池在体积能量密度上相较传统金属锂电池具有绝对优势 (AM, 2022)
5. 高离子-电子导电材料提升电池能量密度
提过采用高离子-高电子电导电极材料替换电极中非活性物质(电解液,导电添加剂和粘合剂等),降低电极非活性物质占比,使得电极材料能量密度在电极层面实现最大程度发挥,进而提升电池器件能量密度。
(1) 全固态电池:提出高能量密度全电化学活性物质全固态金属锂电池 (Adv. Mater. 2021)
(2) 有机锂离子电池:高电子导电无机-有机复合正极材料提升有机全电池能量密度 (Adv. Mater. 2021)
(3) 锂硫电池:嵌入-转化混合型富硫正极实现高体积和能量密度锂硫电池 (Nature Energy, 2019)
代表性论文及专利:
----------------------------------------- 论文代表作 -------------------------------------------
1. Jinming Yue, Kang Xu*, Liumin Suo*, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 13,1061–1069,(2021)
【注】提出富二氧化碳宽电位电解液,实现了盐浓度减低4倍,宽电位,低成本和宽温区兼得
2. Binghang Liu, Liumin Suo*, et al. Aluminum Corrosion-Passivation Regulation Prolongs Aqueous Batteries Life. Nature Communications, 2922, (2024)
【注】提出水系电池铝集流体界面钝化新思路:电化学腐蚀-化学沉淀调控实现水系电池延寿
3. Xiaolin Xiong, Rong Xu*,Liumin Suo*, et al. Creep-type all-solid-state cathode achieving long life. Nature Communications, 3706, (2024)
【注】提出蠕变性全活性物质全固态电池,实现了固-固界面自调节自适应,延长了全固态电池寿命
4. Minglei Mao; Liumin Suo*, et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries, Nature Communications, 1082, (2023)
【注】提出富阴离子界面型电解液,同时实现了正负极界面双调制,研制出高电压无负极金属锂电池
5. Tao Liu, Liumin Suo*, et al. Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells. Angew. Chem. Int. Edit, (2021)
【注】提出超轻电解液,实现了多元组分平衡复配,锂硫电池能量密度提升大于20%
6. Meiying Li, Ju Li*, Liumin Suo*, et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries. Advanced Materials, (2021)
【注】提出全活性物质全固态电池概念,并在硫化物基体系中完成了概念验证,正负极由100%活性物质构成
7. Liangdong Lin, Liumin Suo*, et al., Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for Anode-Free Lithium Metal Batteries. Angew. Chem. Int. Edit, (2021)
【注】提出富锂正极锂补偿思路,首次实现了富锂高镍三元正极用于无负极金属锂电池,获得了能量密度和寿命兼具的无负极金属锂电池
8. Weijiang Xue, Liumin Suo*, Ju Li*, et al., Intercalation-Conversion Hybrid Cathodes Enabling Li-S Full-Cell Architectures with Jointly Superior Gravimetric and Volumetric Energy Densities. Nature Energy, 4, 374, (2019) 【引用 >500 次】
【注】提出转化型-嵌入型富硫正极,实现了锂硫电池轻量化,解决了锂硫电池体积能量密度和重量能量密度不能兼顾的问题
9. Liumin Suo, Chunsheng Wang*, Kang Xu* et al., "Water-in-Salt" Electrolyte Enables High-Voltage Aqueous Lithium-Ion Chemistries. Science, 350, 938, (2015) 【引用 > 3200 次】
【注】提出宽电位高盐浓度Water-in-salt电解液,水系电解液窗口拓宽至3V
10. Liumin Suo, Yong-sheng Hu* et al., A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nature Communications, 4, (2013) 【引用 > 2300 次】
【注】首次提出有机高盐浓度Solvent-in-salt电解液,大幅提升了金属锂负极稳定性
------------------------------------同行评议审稿人 -------------------------------------------------
Science, Nature Sustainability, Nature Communication, Science Advances, Joule, JACS, Angew, Adv.Mater. Adv.Energy Materials, ACS Energy Letter 等期刊审稿人
------------------------2017年10 月 独立开展研究工作后 -------------------------------
一. 发表研究论文:通讯/第一作者文章:45 篇 (* 通信作者:43 篇,一作:2 篇)
- Nature 子刊(5篇): Nature Energy (1)/Nature Chemistry (1)/Nature Communications(3)
- 综合性期刊(3篇):Science Advances (1)/PNAS (2)
- 化学类(6篇):Angew (3) / JACS (2) / JACS Au (1)
- 材料类(9篇): Adv. Mater. (7) / Matter (1)/ACS Materials Letter (2)
- 能源材料类(9篇): Adv. Energ. Mater. (3) / ACS Energy Letter (2)/Energy Storage Material (5)
- 纳米材料类(2篇):Nano Letter(1) / ACS Nano (1)
二. 邀请撰写约稿综述 (通讯作者 3 篇)
1. Energy & Fuels 专刊 "Recent Advances on Batteries and Energy Storage in China"
Progress in rechargeable aqueous alkali-ion batteries in China(Energy & Fuels, 2021)
2. Water-in-Salt Widens the Electrochemical Stability Window: Thermodynamic and Kinetic Factors
3. Concentrated Electrolytes for Rechargeable Lithium Metal Batteries(Materials Futures, 2023)
---------------------------------------- 2024 年 --------------------------------------------------------------------------
45. Binghang Liu, Liumin Suo*, et al. Aluminum Corrosion-Passivation Regulation Prolongs Aqueous Batteries Life. Nature Communications, 2922, (2024)
44. Xiaolin Xiong, Rong Xu*,Liumin Suo*, et al. Creep-type all-solid-state cathode achieving long life. Nature Communications, 3706, (2024)
43. Minglei Mao*, Liumin Suo*, and Chengliang Wang*, Electrolyte design combining fluoro- with cyano- substitution solvents for anode- free Li metal batteries. PNAS, 121, 5, e2316212121 (2024).
42. Xiangzhen Zhu, Liumin Suo*, et al. Highly Efficient Spatially–Temporally Synchronized Construction of Robust Li3PO4-rich Solid–Electrolyte Interphases in Aqueous Li-ion Batteries. Angewandte Chemie-International Edition. 63, e2023175 (2024).
41. Jingnan Feng, Huican Mao*, and Liumin Suo*, et al. Ultralight Electrolyte with Protective Encapsulation Solvation Structure Enables Hybrid Sulfur-Based Primary Batteries Exceeding 660 Wh/kg. Journal of the American Chemical Society 145, 6, 3755-3763 (2024).
40. Binghang Liu, Jintao Ma, and Liumin Suo*, et al. Bifunctional Fluorocarbon Electrode Additive Lowers the Salt Dependence of Aqueous Electrolytes. Advanced Materials 2413573 (2024)
39. Jingnan FengBinghang Liu#, XQ Chen#, Huijie Zheng*, Gangqin Liu*, and Liumin Suo*, et al. Operando quantum sensing captures the nanoscale electrochemical evolution in batteries. Device (2024).
38. Huajun Li, Liumin Suo*, et al. Suppressing sulfur crosstalk lowers the bar of lithium metal anode for practical Li-S pouch cells. Energy Storage Materials 71, 103664 (2024).
37. Xiaolin Xu, Liumin Suo*, et al. Monophase-homointerface electrodes intrinsically stabilize high-voltage all-solid-state batteries. Science China Chemistry 67 (5), 1729-1739 (2024).
36. Chunxi Tian, Kun Qin, Tingting Xu, Liumin Suo*. Hybrid Li-rich cathodes for anode-free lithium metal batteries. Next Nanotechnology 145, 7, 100114 (2024).
----------------------------------- ---- 2023 年 --------------------------------------------------------------------------
35. Minglei Mao; Liumin Suo*, et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries, Nature Communications, 1082, (2023)
34. Minglei Mao*, Liumin Suo* and Chengliang Wang*, The Proof‐of‐Concept of Anode‐Free Rechargeable Mg Batteries. Advanced Science 10 (14), 2207563 (2023)
33. Tao Liu, Liumin Suo*, Diminishing ether-oxygen content of electrolytes enables temperature-immune lithium metal batteries. Science China-Chemistry 66,9, 2700-2710 (2023)
---------------------------------------- 2022 年 -------------------------------------------
32. Anxing Zhou#, Jingkai Zhang#, Guang Feng*, Liumin Suo*, et al., Electric-field-reinforced Hydrophobic Cationic Sieve Lower the concentration Threshold of Water-in-Salt Electrolytes. Advanced Materials, 2207040, (2022)
31. Liangdong Lin, Liumin Suo*, et al., A Better Choice to Achieve High Volumetric Energy Density: Anode-Free Lithium Metal Batteries. Advanced Materials, (2022)
30. Tianshi Lv, Liumin Suo*, et al., Transition metal assisting pre-lithiation reduces the P/N ratio to balance the energy density and cycle life of aqueous batteries. Advanced Energy Materials, 2202447,(2022)
29. Meiying Li, Hongyi Pan, Xiqian Yu*,Liumin Suo*, et al., All-in-one Ionic-electronic Dual-carrier Conducting Framework Thickening All-solid-state Electrode. ACS Energy Letter. (2022)
28. Xiangzhen Zhu, Liumin Suo*, et al., Wadsley-Roth Phase Niobium-based Oxides Anode Promising High Power and Energy Density Aqueous Li-ion Batteries. ACS Materials Letter. (2022)
27. ZeJing Lin, Minglei Mao*, Liumin Suo*, et al., Electroactive-Catalytic Conductive Framework for Aluminum-Sulfur Batteries. Energy Storage Material. (2022)
26. Liangdong Lin, Liumin Suo*, et al., Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Material. (2022)
---------------------------------------- 2021 年 -------------------------------------------
25. Jinming Yue, Kang Xu*,Liumin Suo*, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 13,1061–1069,(2021)
24. Zejing Lin#, Minglei Mao#, Liumin Suo*, et al. Amorphous Anion-Rich Titanium Polysulfides for Aluminum-Ion Batteries. Science Advances, (2021)
23. Tao Liu, Liumin Suo*, et al. Low-Density Fluorinated Solane Solvent Lasting Deep Cycle Lithium-Sulfur Batteries Life Advanced Materials, (2021)
22. Tao Liu, Liumin Suo*, et al. Ultralight Electrolyte for High-Energy Lithium-Sulfur Pouch Cells. Angew. Chem. Int. Edit, (2021)
21. Minglei Mao, Liumin Suo*, et al. Amorphous Redox-Rich Polysulfides for Mg Cathode. JACS Au, (2021)
20. Meiying Li, Ju Li*, Liumin Suo*, et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries. Advanced Materials, (2021)
19. Liangdong Lin, Liumin Suo*, et al., Li-Rich Li2[Ni0.8Co0.1Mn0.1]O2 for Anode-Free Lithium Metal Batteries. Angew. Chem. Int. Edit, (2021)
18. Minglei Mao#, Shu Wang#, Liumin Suo*, et al., Electronic Conductive Inorganic Cathodes Promising High-Energy Organic Batteries. Advanced Materials, (2021)
17. Liangdong Lin, Liumin Suo*, et al., Epitaxial Induced Plating Current-Collector Lasting Lifespan of Anode-Free Lithium Metal Battery. Advanced Energy Materials, (2021)
16. Anxing Zhou, Liumin Suo*, et al. TiO2 (B) Anode for High-Voltage Aqueous Li-ion Batteries, Energy Storage Material. (2021)
15. Pan Tan#, Jinming Yue, Liumin Suo*, Liang Hong* et al., Solid-like Nano-Anion-Cluster Constructs Free Lithium-ion Conducting Super-Fluid Framework in Water-in-salt Electrolyte. The Journal of Physical Chemistry, (2021)
14. Yuxin Tong, Ang Gao, Qinghua Zhang*, Liumin Suo*, Lin Gu* et al., Cation-synergy stabilizing anion redox of Chevrel phase Mo6S8 in aluminum ion battery. Energy Storage Material. (2021)
13. Binghang Liu, Liumin Suo*, et al., Sandwich-structure Corrosion-resistant Current Collector for Aqueous Batteries. ACS Applied Energy Materials. (2021)
------------------------------------------- 2020 年 ------------------------------------------------
12. Liwei Jiang, Oleg Borodin*, Liumin Suo*, Yong-Sheng Hu* et al., High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte. Advanced Materials, 32, (2020)
11. Minglei Mao, Yuxin Tong# Lin Gu*, Liumin Suo*, et al., Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 20, 6852, (2020)
10. Jinming Yue, Liumin Suo*, et al., Interface Concentrated-Confinement Suppressing Cathode Dissolution in Water-in-Salt Electrolyte. Advanced Energy Materials, 10, (2020)
9. Minglei Mao, Liumin Suo*, et al., Iodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo6S8 Nanosheets for Advanced Multivalent Batteries. ACS Nano, 14, 1102, (2020)
8. Zejing Lin, Liumin Suo*, et al., Wearable Bipolar Rechargeable Aluminum Battery. ACS Materials Letter, 2, 808, (2020)
7. Minglei Mao, Miao Liu*, Liumin Suo*, et al., Simplifying and accelerating kinetics enabling fast-charge Al battery. Journal of Materials Chemistry A, 8, 23834, (2020)
------------------------------------------- 2019 年 ------------------------------------------------
6. Weijiang Xue, Liumin Suo*, Ju Li*, et al., Intercalation-Conversion Hybrid Cathodes Enabling Li-S Full-Cell Architectures with Jointly Superior Gravimetric and Volumetric Energy Densities. Nature Energy, 4, 374, (2019)
5. Anxing Zhou, Liumin Suo*, et al., “Water-in-Salt” Electrolyte Promotes High-Capacity Fefe(Cn)(6) Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & Interfaces, 11, 41356, (2019)
4. Weijiang Xue, Liumin Suo*, Ju Li*, et al., Manipulating sulfur mobility enables advanced Li-S batteries. Matter 1 (4), 1047-1060
3. Lilu Liu, Liumin Suo*, Yong-Sheng Hu*, et al. In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 4, 1650, (2019)
------------------------------------------- 2018 年 ------------------------------------------------
2. Liumin Suo, Ju Li*, et al., Fluorine-Donating Electrolytes Enable Highly Reversible 5-V-Class Li Metal Batteries. Proceedings of the National Academy of Sciences of the United States of America, 115, 1156, (2018)
1. Liumin Suo, Ju Li*, Kang Xu*, Chunsheng Wang*, et al., How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes. Journal of the American Chemical Society, 139, 18670, (2017)
目前的研究课题及展望:
主要从事新型二次电池体系开发及相关基础科学问题研究,包括面向下一代电池新型电解液探索研究与开发,高电压水系锂/钠储能电池,高能量密度金属锂动力电池(锂硫电池,全固态金属锂电池,无负极金属锂电池),多电子转移镁/铝电池体系
培养研究生情况:
计划每年招收硕博连读生或博士生3名,欢迎具有材料、物理、化学、电化学等专业背景的考生报考。 此外拟招2-3名博士后,欢迎具有相关背景的博士毕业生申请博士后岗位。
博士后培养情况(博后出站3人,博后在站2人):
1. 毛明磊,2018-2021,去向:华中科技大学 (副教授)
成果:Adv.Mater. (一作),JACS Au (一作),Sci. Adv. (共一), Nano Letter (一作),ACS Nano (一作) JMCA (一作)
项目:自然科学青年基金,中科院特别研究助理项目,博士后面上/特别基金
2. 刘涛,2019-2021,去向:青岛生物能源与过程研究所 (博士后)
成果:Angew (一作),Adv.Mater. (一作)
项目:博士后基金
3. 林良栋,2019-2022, 去向:宁波大学 (副教授)
成果:Angew (一作),Adv.Mater. (一作)Adv. Energ. Mater. (一作)EnSM (一作)
项目:自然科学青年基金,博士后基金
研究生培养情况(博士毕业8人):
1. 岳金明(浙江师范大学),2021届博士生,毕业去向:中国科学院物理研究所
成果:Nature Chemistry (一作),Adv.Energy.Mater. (一作),JPCC (共一)
2. 林泽京(天津大学),2022届博士生 (研究生国家奖学金获得者),毕业去向:河北工业大学,讲师
成果:Science. Advances (一作),ACS Material Letter (一作),EnSM (一作), Nano Letter (共一)
3. 李美莹(东北师范大学),2022届博士生,毕业去向:理想汽车
成果:Adv.Mater. (一作),ACS Energy Letter (一作)
4. 朱祥振(海南大学),2023届博士生,毕业去向:东方理工大学
成果:Angew (一作),ACS Materials Letter (一作)
5. 吕天莳(中国科学院大学),2023届博士生,毕业去向:华为
成果:Adv.Energy.Mater. (一作),CE (一作)
6. 周安行(北京理工大学),2023届博士生,毕业去向:中国科学院物理研究所
成果:Adv.Mater. (一作),EnSM (一作)ACS Applied Materials & Interfaces (一作)
7. 刘秉航(中国科学院大学),2024届博士生,毕业去向:
成果:Nature Communications (一作) Adv.Mater. (一作),ACS Applied Energy Materials (一作)
8. 熊小琳(华中科技大学),2024届博士生,毕业去向:
成果:Nature Communications (一作) Science China Chemistry. (一作)
其他联系方式:
Email:suoliumin@iphy.ac.cn
Email: