叶蓬

简介


特聘研究员,博导,国家/中科院青年人才引进计划

中国科学院物理所/松山湖材料实验室,超快物质科学中心/阿秒中心

2001 ~ 2005 北京理工大学,光电工程系-测控技术与仪器,工学学士

2006 ~ 2008 北京理工大学,光电工程系-光学工程,工学硕士            

2008 ~ 2015 中国科学院物理研究所/中国科学院大学,物理学-光学,理学博士(硕博连读)

                    中科院优秀博士论文

2015 ~ 2017  Imperial College London,London,UK

                     Quantum Optics and Laser Science (QOLS) Group

                     Research Associate

2018 ~ 2021  Extreme Light Infrastructure – Attosecond Light Pulse Source (ELI-ALPS) 

                     欧盟极限光学基础设施-阿秒光源,Szeged,Hungary

                     Research Fellow (固定职位)

2021 ~ 2023  CEA and University Paris-Saclay, LIDYL(Laboratory Interactions, Dynamics and Lasers)

                     Institut Polytechnique de Paris, LOA (Laboratoire d’Optique Appliquée),Paris,France 

                     Research Engineer

2023 ~          中国科学院物理所/中国科学院大学/松山湖材料实验室

主要研究方向


1. 基于高次谐波产生(High Order Harmonic Generation)的阿秒脉冲和XUV脉冲。一方面是阿秒光源的产生,阿秒脉冲的时间宽度在阿秒(10^-18秒)量级,和电子运动的时间尺度可以比拟,是探测电子运动最有力的工具之一。XUV波段的光源(1~100nm)无论在科学还是工业上都有着广泛的应用,目前朝着高重频和高光子能量发展。另一方面是利用阿秒脉冲,对物质内部的动力学过程进行探测。

2. 强场光电子学。利用物质在强激光场下的强场(strong-field)非微扰非线性(non-perturbative and non-linear)响应,观察并控制物质中电子的结构和运动。扩展并深化高次谐波的产生,并拓展电子态的强场控制。可观测量是材料辐射出的高次谐波、光电子、以及瞬态吸收光谱等。

3. 少周期脉冲的产生和诊断

超短脉冲的线性和非线性传播,以及非线性压缩;高重频激光。

过去的主要工作及获得的成果


1. 阿秒光源

(1) 国内的第一个阿秒脉冲 Chin. Phys. Lett. 30, 093201 (2013)

(2) 高能量的水窗高次谐波(200 eV ~ 500 eV ) Sci. Adv. 4.5 (2018): eaar3761

(3)欧盟阿秒光源中的高重频(100kHz)高通量阿秒脉冲 Ultrafast Science 2022 (2022)

2. 利用水窗高次谐波(阿秒脉冲),测量物质内部激子被单光子激发以后的动力学演化过程

Nat. Commu.  13, 3414 (2022). 

3. 时空调制的强飞秒激光和物质的相互作用

(1) 飞秒激光的线性和非线性传播

Phy. Rev. A 90 (6), 063808 (2014).  J. Phys. B 53.15 (2020): 154004.

Phys. Rev. Applied 16.1 (2021): L011001.

(2) 气体中高次谐波产生过程中的量子轨道

Phy. Rev. Lett. 113.7 (2014): 073601.  New Journal of Physics 23.12 (2021): 123012.

(3) 气体、固体材料中电子的强场激发

Scientific reports 6.1 (2016): 1-7. Phys. Rev. Lett. 121, 063202 (2018).

Advances in Ultrafast Condensed Phase Physics IV. Vol. 12992.l SPIE (2024)

Adv. Funct. Mater (2024):2409528

代表性论文及专利


Peer Review Journals

[29] Schlemmer, L., Ye, P., Gauthier, D., Sunuganty, V., Babenkov, S., Froidevaux, M., Liu, X., Merdji, H. and Boutu, W., 2024, June. Spatial transformations of high-order harmonic generation in transition metal dichalcogenides. In Advances in Ultrafast Condensed Phase Physics IV (Vol. 12992, pp. 34-36). SPIE.

[28] Mallick, S., Ye, P., Boutu, W., Gauthier, D., Merdji, H., Bibes, M., Viret, M., Bouzehouane, K. and Cros, V., 2024. OAM Driven Nucleation of Sub‐50 nm Compact Antiferromagnetic Skyrmions. Advanced Functional Materials, p.2409528.

[27] Csizmadia, T., Filus, Z., Grósz, T., Ye, P., Gulyás Oldal, L., De Marco, M., Jójárt, P., Seres, I., Bengery, Z., Gilicze, B. and Lucchini, M., 2023. Spectrally tunable ultrashort monochromatized extreme ultraviolet pulses at 100 kHz. APL Photonics8(5).

[26] Filus, Z., Ye, P., Csizmadia, T., Grósz, T., Gulyás Oldal, L., De Marco, M., Füle, M., Kahaly, S., Varjú, K. and Major, B., 2022. Liquid-cooled modular gas cell system for high-order harmonic generation using high average power laser systems. Review of Scientific Instruments93(7).

[25] Garratt, D., Misiekis, L., Wood, D., Larsen, E.W., Matthews, M., Alexander, O., Ye, P., Jarosch, S., Ferchaud, C., Strüber, C. and Johnson, A.S., 2022. Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy. Nature Communications13(1), p.3414.

[24] Ye, P., Oldal, L.G., Csizmadia, T., Filus, Z., Grósz, T., Jójárt, P., Seres, I., Bengery, Z., Gilicze, B., Kahaly, S. and Varjú, K., 2022. High-flux 100 kHz attosecond pulse source driven by a high-average power annular laser beam. Ultrafast Science.

[23] Csizmadia, T., Oldal, L.G., Ye, P., Majorosi, S., Tzallas, P., Sansone, G., Tosa, V., Varjú, K., Major, B. and Kahaly, S., 2021. Detailed study of quantum path interferences in high harmonic generation driven by chirped laser pulses. New Journal of Physics23(12), p.123012.

[22] Gulyás Oldal, L., Ye, P., Filus, Z., Csizmadia, T., Grósz, T., De Marco, M., Bengery, Z., Seres, I., Gilicze, B., Jójárt, P. and Varjú, K., 2021. All-optical experimental control of high-harmonic photon energy. Physical Review Applied16(1), p.L011001.

[21] Gulyás Oldal, L., Csizmadia, T., Ye, P., Harshitha, N.G., Zaïr, A., Kahaly, S., Varjú, K., Füle, M. and Major, B., 2020. Generation of high-order harmonics with tunable photon energy and spectral width using double pulses. Physical Review A102(1), p.013504.

[20] Ye, P., Csizmadia, T., Oldal, L.G., Gopalakrishna, H.N., Füle, M., Filus, Z., Nagyillés, B., Divéki, Z., Grósz, T., Dumergue, M. and Jójárt, P., 2020. Attosecond pulse generation at ELI-ALPS 100 kHz repetition rate beamline. Journal of Physics B: Atomic, Molecular and Optical Physics53(15), p.154004.

[19] Gulyás Oldal, L., Csizmadia, T., Ye, P., Harshitha, N.G., Füle, M. and Zaïr, A., 2019. Double-pulse characterization by self-referenced spectral interferometry. Applied Physics Letters115(5).

[18] Schütte, B., Peltz, C., Austin, D.R., Strüber, C., Ye, P., Rouzée, A., Vrakking, M.J., Golubev, N., Kuleff, A.I., Fennel, T. and Marangos, J.P., 2018. Low-energy electron emission in the strong-field ionization of rare gas clusters. Physical Review Letters121(6), p.063202.

[17] Johnson, A.S., Wood, D., Austin, D.R., Brahms, C., Gregory, A., Holzner, K.B., Jarosch, S., Larsen, E.W., Parker, S., Strüber, C. and Ye, P., 2018. Apparatus for soft x-ray table-top high harmonic generation. Review of Scientific Instruments89(8).

[16] Johnson, A.S., Austin, D.R., Wood, D.A., Brahms, C., Gregory, A., Holzner, K.B., Jarosch, S., Larsen, E.W., Parker, S., Strüber, C.S. and Ye, P., 2018. High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses. Science advances4(5), p.eaar3761.

[15] B SchütteP YeS PatchkovskiiDR AustinC Brahms, C Strüber, T WittingMY Ivanov, T. W. G. John, and J. P. Marangos. "Strong-field ionization of clusters using two-cycle pulses at 1.8 μ m." Scientific reports 6, no. 1 (2016): 39664.

[14] A.S. Johnson, L. Miseikis, D. A. Wood, D. R. Austin, C. Brahms, S. Jarosch, C.S. Strüber, P. Ye, and J. P. Marangos, 2016. Measurement of sulfur L2, 3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum. Structural Dynamics3(6).

[13] DR AustinT WittingSJ WeberP Ye, T Siegel, P Matía-Hernando, AS Johnson, et al. "Spatio-temporal characterization of intense few-cycle 2 μm pulses." Optics Express 24, no. 21 (2016): 24786-24798.

[12] SY Zhong, XK He, H Teng, P Ye, LF Wang, et al. "Frequency dependence of quantum path interference in non-collinear high-order harmonic generation." Chinese Physics B 25, no. 2 (2016): 023301.

[11] LF Wang, M Liu, H Teng, BB Wang, LY Peng, XK He, SY Zhong, P Ye, P He, MJ Zhan, et al. "Above-threshold ionization spectra asymmetrically broadened in the extreme-ultraviolet pulse train and infrared laser fields." JOSA B 32, no. 4 (2015): 540-544.

[10] P Ye, H Teng, XK He, SY Zhong, LF Wang, MJ Zhan, W Zhang, CX Yun, ZY Wei. "Minimizing the angular divergence of high-order harmonics by truncating the truncated Bessel beam." Physical Review A 90, no. 6 (2014): 063808.

[9] P Ye, X He, H Teng, M Zhan, S Zhong, W Zhang, L Wang, Z Wei.  "Full quantum trajectories resolved high-order harmonic generation." Physical Review Letters 113, no. 7 (2014): 073601.

[8] W Zhang, H Teng, CX Yun, P Ye, MJ Zhan, et al. "Long-Term Stabilization of Carrier-Envelope Phase for Few Cycles Ti: Sapphire Laser Amplifier." Chinese Physics Letters 31, no. 8 (2014): 084204.

[7] P Ye, X He, H Teng, M Zhan, W Zhang, L Wang, S Zhong, Z Wei. "Extraction of the in situ temporal information of few-cycle laser pulse from carrier-envelope phase-dependent high order harmonic spectrum." JOSA B 31, no. 6 (2014): 1355-1359.

[6] 范海涛, 王胭脂, 王兆华, 叶蓬, 胡国行, 秦爽, 何会军, 易葵, 邵建达, 魏志义, 2014. 全啁啾镜色散补偿的亚 8 fs 钛宝石激光器. 物理学报63(21), p.214203.

[5] 张大鹏, 梁志国, 叶蓬. "光频测量用飞秒激光频率梳光谱扩展实验研究." 计测技术 34.3 (2014): 43-46.

[4] J. Y. Zhang, J., Wang, B. Chen, P. Ye, W. Zhang, et al. (2013). Safety evaluation of femtosecond lentotomy on the porcine lens by optical measurement with 50‐femtosecond laser pulses. Lasers in Surgery and Medicine45(7), 450-459.

[3] M. J. Zhan, P. Ye, H. Teng, et al. "Generation and measurement of isolated 160-attosecond XUV laser pulses at 82 eV." Chinese Physics Letters 30.9 (2013): 093201.

[2] S. Y. Zhong, X. K. He, P. Ye, M. J. Zhan, H. Teng, Z. Y. Wei. (2013). Effects of driving laser jitter on the attosecond streaking measurement. Optics Express21(15), 17498-17504.

[1] 梁志国, 魏志义, 韩海年, 张大鹏, 叶蓬, 武腾飞. (2013). 用差频腔产生覆盖 633nm 光谱的飞秒激光频率梳. 计量学报34(2), 161-167.

 

翻译和科普文章

[3] 叶蓬, 魏志义, 2023. 从光电效应, 波粒二象性到阿秒脉冲——2023 年诺贝尔物理学奖. 自然杂志45(6), pp.410-416.

[2] 2023年物理诺奖是否违反海森堡的测不准原理?深度解读阿秒脉冲

[1]《阿秒物理》 赵环,赵研英,叶蓬(译). 国防工业出版社.2023年1月 第1版

Luis Plaja, Ricardo Torres, and Amelle Zaïr. "Attosecond physics." Springer Series in Optical Sciences 177 (2013).

目前的研究课题及展望


依托中科院物理所/松山湖材料实验室的阿秒中心/超快物质中心,目前主要涉及三个方面:

1. 高重频高次谐波和阿秒脉冲的产生和诊断

2. 飞秒激光和固体材料的非微扰非线性相互作用

3. 利用阿秒光源和高次谐波光谱学研究材料内部的超快动力学过程

4. 作为阿秒激光驱动源的高重频少周期飞秒激光

欢迎博士后、工程师、和研究生的加入,招满为止

培养研究生情况


在科学世界的探索如同侦探破案,看到不可思议的现象,相比等着别人告诉你答案,如果你打心底更想亲自探寻原因,能够乐在其中,那欢迎你的加入。

计划每年招收1~2名硕士生和博士生,同时欢迎博士后加入。

你将加入超快物质中心和阿秒中心,在国内的优秀平台进行研究工作;并有机会到国际上的相关知名机构学习、访问。

 

Exploring the world of science is like a detective solving a case. You see incredible phenomena. Rather than waiting for others to tell you the answer, if you sincerely want to explore the reasons yourself and enjoy it, you are welcome to join.

It is planned to recruit 1 to 2 master's and doctoral students every year, and postdoctor are also welcome to join.

You will join the Ultrafast Matter Center and the Attosecond Center to conduct research; you will also have the opportunity to study and visit relevant well-known international institutions.

Email


ye.peng@iphy.ac.cn