沈洁

简介


学术经历:

现任中国科学院物理研究所特聘研究员,博士生导师。2008年在东南大学获得学士学位,2013年中科院物理所获得博士学位,先后在耶鲁大学(2013-2015)、荷兰代尔夫特理工大学qutech实验室-微软Delft量子实验室(2015-2019)做博士后。2021年获中国科学院人才项目,北京市科技新星,2023年获北京市杰出青年基金项目,全国妇女第十三届代表大会代表,2023年首都最美巾帼奋斗者。2024年马丁-伍德奖

项目:

主持基金委面上项目''基于强自旋-轨道耦合半导体纳米线的拓扑量子器件'',中科院率先行动,北京市杰出青年基金项目,国家自然科学基金“第二代量子体系的构筑和操控”重大研究计划项目课题负责人,参与中国科学院战略性先导科技B类专项“新一代超导与拓扑物理学”、基金委“第二代量子体系的构筑和操控”集成项目、依托综合极端装置申请的院国际交流计划(PIFI)国际杰出团队项目之一。曾在美国参与NSF项目Beyond conventional methods: chemical routes to dope topological insulator nanostructures and two-dimensional materials magnetically和DOE项目Topological superconductor core-shell nanowires,在荷兰参与FOM/NOW/Microsoft项目Scalable circuits of Majorana qubits。

文章:

先后在Science、Nature、Science Advances、Nature Communications、Nano Letters等发表多篇文章,引用5000以上,h因子21。作为一作或通讯作者发表一篇Science,三篇Nature Communications,一篇Science Advances,一篇PRX以及三篇Nano Letters等。

会议和社会任职:

受邀在2016年丹麦哥本哈根举办的Silicon Platform for Quantum Spintronics(SiSpin)、2019年中国香港举办的Gordon Research Conference以及2019年日本东京举办的Frontiers in Quantum Materials & Devices (FQMD) workshop等多个国际会议做报告。于2021年6月被Nature杂志邀请作为亚太区拓扑量子器件的代表,参加圆桌会Nature round table on magnetic topological materials,与Nature、Nature physics、Nature review physics等资深编辑和其他代表共同讨论拓扑材料的发展方向和应用前景。目前担任Chinese Physics Letters、Chinese Physics B、《物理学报》和《物理》的青年编委会成员,Nature旗下Communication Physics学术编委,以及Frontiers of Physics分部编委。2022年5月开始北京量子信息科学研究院量子计算部兼职研究员。2023年开始任北京市怀柔区妇女联合会兼职副主席。

主要研究方向


基于强自旋轨道耦合纳米线、二维拓扑绝缘体和陈绝缘体、三维拓扑绝缘体以及新型拓扑材料的拓扑量子态调控和拓扑量子计算
      在过去的近50年间,随着人类社会全面进入信息技术时代,无论是日常生活还是科学研究对计算机的计算能力要求越来越高。根据摩尔定律,每隔18个月计算机的性能翻两倍,芯片越做越小。但随之问题也接踵而至,一是目前的芯片尺寸达到了工业界器件合成的极限,二是量子效应随尺寸的减小而越来越明显,影响性能。此时,量子计算机呼之欲出。
      经典计算机由比特产生0或1两种态来构成二进制计算,计算能力与比特数量N的关系可表示为2N(线性增加)。而量子计算机构建在具有双能级系统 a |0> + b |1> 的量子比特上,量子比特处于双能级的叠加态从而可进行平行计算,故计算能力是2N(指数增加),远超经典计算机。然而,多个量子比特的纠缠极易受到环境噪声的破坏,导致保真度(fidelity)降低,增加计算中错误的几率。所以如何在增加量子比特数量的同时提高保真度是建立可扩展的量子计算芯片面对的核心问题。
      拓扑量子比特是利用系统本身的拓扑性质,通过对非阿贝尔任意子在2+1维空间下编织(braiding)而进行非定域的编码,具有免于环境噪声干扰的鲁棒性(robustness),从而提高保真度。欧美为发展拓扑量子计算已投入了大量资金,微软和IBM都已经组建了部门进行相关的研究。目前拓扑量子计算还处在初步研究的阶段——尝试建立第一个拓扑量子比特,但发展十分迅猛,有望在未来几年有所突破。因此,此时正是投入拓扑量子计算、抓住契机的合适时机。

实验室英文主页: ShenGroup (iphy.ac.cn)

个人Google Scholar:  https://scholar.google.com/citations?user=aOZ9xvgAAAAJ&hl=zh-CN

实验室主页:http://tsuilab.iphy.ac.cn/index.html

过去的主要工作及获得的成果


1.    在强自旋轨道耦合InSb纳米线及纳米片中构建并系统研究了马约拉纳零能模的性质,相关的文章有Nature Communications 9, 4801 (2018)(第一作者及共同通讯作者),Nano letters 18 (10), 6483–6488 (2018) (第一作者及共同通讯作者),arXiv:1906.05759(通讯作者), arXiv:2012.10118(第一作者以及共同通讯作者)以及一份专利(Jie Shen, 405693-US-NP; PWF ref 413513US; Hollow Shadow Walls),参与的工作还包括Nature 548, 434 (2017),Advanced Materials 31, 1808181 (2019)。利用一维纳米线结合超导的混合体系构造拓扑超导体,寻找并研究马约拉纳零能模,进而构筑拓扑量子比特,是当前拓扑量子计算的研究重点。在InSb纳米线上覆盖铝引入超导态,在施加一定磁场后这个体系能够成为一维拓扑超导体,在两端各形成一个马约拉纳零能模。这样的系统也被称为马约拉纳岛。我在外延生长铝的InSb纳米线中系统研究了电场、磁场等参数对马约拉纳岛的调控,区分了平庸和拓扑的安德烈夫束缚态,找到了更多马约拉纳零能模的证据;发现了2e和1e两种周期的振荡,证明了此类系统可以很好地控制费米子数目的奇偶性,从而可以用于构筑拓扑量子比特的|0>态和|1>态。另外,也测到了马约拉纳岛上的拓扑相位图,找到了马约拉纳零能模中性的特征(particle-hole symmetry)arXiv:2012.10118(一作以及共同通讯作者)。


2.    是国际上首次在三维拓扑绝缘体(Bi2Se3, Bi2Te3)上实现超导邻近效应的实验者之一。在拓扑绝缘体中引入超导电性是研究拓扑超导和马约拉纳费米子的首要条件。基于拓扑绝缘体材料,在约瑟夫森结和超导量子干涉器(SQUID)中观测到很强的超导邻近效应和清晰的干涉现象(Scientific Reports 2, 339 (2012),共同第一作者)。基于此工作,我进一步利用不连续或者连续的铅膜,在三维拓扑绝缘体上做出了复杂的超导量子干涉器件,探测到了表面态的超导电流,并且发现其与表面态电子的螺旋性相关(arxiv:1303.5598 第一作者,arXiv:1503.00838共同第一作者)。


3.    首次CVD长出大面积超薄三维拓扑晶体绝缘体SnTe(Nano Letters 14, 4183 (2014) 第一作者),并且测到掺In后诱导的超导及其表面态(Nano Letters 15, 3827 (2015) 第一作者)。拓扑晶体绝缘体是受到晶体对称保护而非时间反演对称保护的新型拓扑量子材料。由于在这方面做出了比较系统性的工作,我被邀请写作了这个领域的一篇综述性文章(Nanoscale 6, 14133 (2014) 第一作者)。之后还系统研究了掺杂对于费米能级的影响(Advanced Electronic Materials 2, 1600144 (2016) 第一作者)。基于此,申请人作为主要成员申请和参与了一个美国NSF的项目(40万美元),和另一个美国能源部DOE的项目(55万美元)。


4.    还研究了一种有潜力的空穴型拓扑量子材料–GeSi纳米线。这个材料本身的自旋轨道耦合比较弱,但其空穴输运的特点使得多种能带之间的自旋轨道耦合作用增强,从而使这种材料能够被用于构造拓扑量子器件。这种不同能带之间的自旋轨道耦合被称为直接自旋轨道耦合,对研究自旋轨道耦合有着重要的意义。证明了这种直接自旋轨道耦合的存在,并且在GeSi纳米线中引入了超导态,推动了这个材料在拓扑量子计算中的应用(Nano letters 18 (10), 6483-6488 (2018),Advanced materials 30 (44), 1802257(2018),Nano Lett. 20(1), 122–130(2020))。

 

5.    国际上首次观察到量子反常霍尔效应的实验者之一,文章发表在Science 340, 167 (2013)。该工作由薛其坤老师牵头的清华-物理所团队联合完成。在磁性掺杂拓扑绝缘体中,量子化的边缘态不需要磁场便会出现,故称之为量子反常霍尔效应。量子反常霍尔效应是霍尔效应家族中重要的一员,是一类新的具有代表性的拓扑量子现象,其发现推动并一度引领了拓扑量子物态方面的实验研究。该工作发表后短短几年已被引用1500余次,并且在诺贝尔奖的官网上被作为支持理论物理学家Duncan Haldane获得2016年物理奖的重要实验辅助依据。助力2018年度国家自然科学一等奖由清华大学薛其坤院士领衔、清华大学和中国科学院物理研究所王亚愚、何珂、马旭村和吕力组成的研究团队荣获国家自然科学奖一等奖,获奖项目名称是“量子反常霍尔效应的实验发现”。

代表性论文及专利


Preprint

47)Guoan Li, Guang Yang, Ting Lin, M. Rossi, G. Badawy, Zhiyuan Zhang, Xiaofan Shi, Jiayu Shi, Degui Qian, Fang Lu, Lin Gu, An-Qi Wang, Zhaozheng Lyu, Guangtong Liu, Fanming Qu, Ziwei Dou, Qinghua Zhang, E. P. A. M. Bakkers, M. P. Nowak, P. Wójcik, Li Lu, Jie Shen. A Versatile Method of Engineering the Electron Wavefunction of Hybrid Quantum Devices. arXiv:2307.06567 (2023)

46)Yupeng Li, Dayu Yan, Yu Hong, Haohao Sheng, An-Qi Wang, Ziwei Dou, Xingchen Guo, Xiaofan Shi, ZiKang Su, Zhaozheng Lyu, Tian Qian, Guangtong Liu, Fanming Qu, Kun Jiang, Zhijun Wang, Youguo Shi, Zhu-An Xu, Jiangping Hu, Li Lu, Jie Shen. Interfering Josephson diode effect and magnetochiral anisotropy in Ta2Pd3Te5 asymmetric edge interferometer. arXiv:2306.08478 (2023)

45) Kui Zhao, Huaiyuan Liu, Jianfei Xiao, Linfeng Tu, Jiangbo He, Mingli Liu, Ruiyang Jiang, Zhongmou Jia, Shang Zhu, Yunteng Shi, Yiwen Ma, Zhaozheng Lyu, Jie Shen, Guangtong Liu, Li Lu, Fanming Qu. Diamond-shaped evolution of the superconducting interference pattern in NbTiN weak-link Josephson junctions. arXiv:2303.05872(2023)

44)Tian Le, Ruihan Zhang, Changcun Li, Ruiyang Jiang, Haohao Sheng, Linfeng Tu, Xuewei Cao, Zhaozheng Lyu, Jie Shen, Guangtong Liu, Fucai Liu, Zhijun Wang, Li Lu, Fanming Qu. Magnetic field filtering of the hinge supercurrent in unconventional metal NiTe2-based Josephson junctions. arXiv:2303.05041(2023)

43)Jiangbo He, Dong Pan, Mingli Liu, Zhaozheng Lyu, Zhongmou Jia, Guang Yang, Shang Zhu, Guangtong Liu, Jie Shen, Sergey N Shevchenko, Franco Nori, Jianhua Zhao, Li Lu, Fanming Qu. Quantifying quantum coherence of multiple-charge states in tunable Josephson junctions. arXiv:2303.02845(2023)

42)Tian Le, Ruiyang Jiang, Linfeng Tu, Renji Bian, Yunteng Shi, Ke Jia, Zhaozheng Lyu, Xuewei Cao, Jie Shen, Guangtong Liu, Youguo Shi, Fucai Liu, Yi Zhou, Li Lu, Fanming Qu. Inverse-current quantum electro-oscillations in a charge-density wave insulator. arXiv:2302.08677(2023)

41)Xiaopei Sun, Zhaozheng Lyu, Enna Zhuo, Bing Li, Zhongqing Ji, Jie Fan, Xiaohui Song, Fanning Qu, Guangtong Liu, Jie Shen, Li Lu. Quasiparticle poisoning rate in a superconducting transmon qubit involving Majorana zero modes. arXiv:2211.08094(2022)

 

 

After joining IOP

40)Anqi Wang, Yupeng Li, Guang Yang, Dayu Yan, Yuan Huang, Zhaopeng Guo, Jiacheng Gao, Jierui Huang, Qiaochu Zeng, Degui Qian, Hao Wang, Xingchen Guo, Fanqi Meng, Qinghua Zhang, Lin Gu, Xingjiang Zhou, Guangtong Liu, Fanming Qu, Li Lu, Tian Qian, Youguo Shi, Zhijun Wang, Jie Shen. A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5. arXiv:2210.06685(2022), Nature Commnunications 14, 7647 (2023)

39)Le LiuYanbang ChuGuang YangYalong YuanFanfan Wu Yiru JiJinpeng TianRong YangKenji WatanabeTakashi TaniguchiGen LongDongxia ShiJianpeng Liu, Jie ShenLi LuWei YangGuangyu ZhangQuantum oscillations in field-induced correlated insulators of a moiréSuperlattice. Science Bulletin (2023).

38)Le Liu, Xin Lu, Yanbang Chu, Guang Yang, Yalong Yuan, Fanfan Wu, Yiru Ji, Jinpeng Tian, Kenji Watanabe, Takashi Taniguchi, Luojun Du, Dongxia Shi, Jianpeng Liu, Jie Shen, Li Lu, Wei Yang, and Guangyu Zhang. Observation of First-Order Quantum Phase Transitions and Ferromagnetism in Twisted Double Bilayer Graphene. Phys. Rev. X (2023).

37)Guanqun Zhang, Lijie Wang, Jinghui Wang, Guoan Li, Guangyi Huang, Guang Yang, Huanyi Xue, Zhongfeng Ning, Yueshen Wu, Jin-Peng Xu, Yanru Song*, Zhenghua An, Changlin Zheng, Jie Shen*, Jun Li*, Yan Chen& Wei Li*. Spontaneous rotational symmetry breaking in KTaO3 heterointerface superconductors. Nature Communications 14,3046 (2023).

36)Enna Zhuo, Zhaozheng Lyu, Xiaopei Sun, Ang Li, Bing Li, Zhongqing Ji, Jie Fan, E.P.A.M. Bakkers, Xiaodong Han, Xiaohui Song, Fanming Qu, Guangtong Liu, Jie Shen, Li Lu. Hole-type superconducting gatemon qubit based on Ge/Si core/shell nanowires. npj Quantum Information (2023)

35)Xiaopei Sun, Bing Li, Enna Zhuo, Zhaozheng Lyu, Zhongqing Ji, Jie Fan, Xiaohui Song, Fanming Qu, Guangtong Liu, Jie Shen, Li Lu. Realization of superconducting transmon qubits based on topological insulator nanowires. Appl. Phys. Lett. 122, 154001 (2023)

34)Ming-Li Liu, Dong Pan, Tian Le, Jiang-Bo He, Zhong-Mou Jia, Shang Zhu, Guang Yang, Zhao-Zheng Lyu, Guang-Tong Liu, Jie Shen, Jian-Hua Zhao, Li Lu, and Fan-Ming Qu. Gate-Tunable Negative Differential Conductance in Hybrid Semiconductor–Superconductor Devices. Chinese Phys. Lett 2023

33)Marco Rossi, Ghada Badawy, Zhi-Yuan Zhang, Guang Yang, Guo-An Li, Jia-Yu Shi, Roy L. M. Op het Veld, Sasa Gazibegovic, Li Lu, Jie Shen*, Marcel A. Verheijen, Erik P. A. M. Bakkers*. Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes. Advanced Functional Materials 33, 2212029(2023)

可控生长InSb纳米低维结构和其高质量量子器件 - 中国科学院物理研究所 (cas.cn)

32) X Zhang, J Hou, W Xia, Z Xu, P Yang, A Wang, Z Liu, J Shen, H Zhang, X Dong, Y Uwatoko, J Sun, B Wang, Y Guo, J Cheng.  Destabilization of the Charge Density Wave and the Absence of Superconductivity in ScV6Sn6 under High Pressures up to 11 GPa.  Materials 15 (20), 7372(2022)

31) Y Zhang, Z Lyu, X Wang, E Zhuo, X Sun, B Li, J Shen, G Liu, F Qu, L Lü.  Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface.  Chinese Physics B 31 (10), 107402 (2022)

30) J Fan, B Jiang, J Zhao, R Bi, J Zhou, Z Liu, G Yang, J Shen, F Qu, L Lu, Ning Kang, Xiaosong Wu.  Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8.  Chinese Physics B 31 (5), 057402 (2022)

29) Ji-Yin Wang†, Constantin Schrade†, Vukan Levajac, David van Driel, Kongyi Li, Sasa Gazibegovic, Ghada Badawy, Roy L. M. Op het Veld, Joon Sue Lee, Mihir Pendharkar, Connor P. Dempsey, Chris J. Palmstrøm, Erik P. A. M. Bakkers, Liang Fu,Leo P. Kouwenhoven, Jie Shen.  Supercurrent parity meter in a nanowire Cooper pair transistor.  Science Advances 8 (16), eabm9896 (2022)

纳米线-超导复合系统的“岛”上的电子奇偶性(parity)计量器 - 中国科学院物理研究所 (cas.cn)

28) P Li, Y Deng, CH Hsu, C Zhu, J Cui, X Yang, J Zhou, YC Hung, J Fan, Z Ji, F Qu, J Shen, C Yang, X Jing, H Lin, Z Liu, L Lu, G Liu.  Dimensionality-dependent type-II Weyl semimetal state in Mo0.25W0.75Te2.  Physical Review B 104 (8), 085423 (2021)

27) S Heedt, M Quintero-Pérez, F Borsoi, A Fursina, N van Loo, GP Mazur, J. Shen ... L. P. Kouwenhoven.  Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices.  Nature Communications 12 (1), 4914(2021)

26)J. Shen, G. W. Winkler, F. Borsoi, S. Heedt, V. Levajac, J.-Y. Wang, D. van Driel, D. Bouman, S. Gazibegovic, R. L. M. Op Het Veld, D. Car, J. A. Logan, M. Pendharkar, C. J. Palmstrøm, E. P. A. M. Bakkers, L. P. Kouwenhoven, and B. van Heck.  Full-parity phase diagram of a proximitized nanowire island.  Phys. Rev. B 104,045422(2021) 

强自旋-轨道耦合材料(InSb)纳米线和超导体复合“岛”的电子奇偶性完整相图 - 中国科学院物理研究所 (cas.cn)

25) Guang Yang, Zhaozheng Lyu, Junhua Wang, Jianghua Ying, Xiang Zhang, Jie Shen, Guangtong Liu, Jie Fan, Zhongqing Ji, Xiunian Jing, Fanming Qu, Li Lu.  Protected gap closing in Josephson trijunctions constructed on Bi2Te3.  Physical Review B 100 (18), 180501(2019)

 

Before joining IOP

24) Gazibegovic, S., Badawy, G., Buckers, T. L. J., Leubner, P., Shen, J., de Vries, F. K., Koelling, S., Kouwenhoven, L. P., Verheijen, M. A., & Bakkers, E. P. A. M. Bottom‐Up Grown 2D InSb Nanostructures. Advanced Materials 31, 1808181 (2019)

23) de Vries, F.K., Sol, M.L., Gazibegovic, S., op het Veld, R.L., Balk, S.C., Car, D., Bakkers, E.P., Kouwenhoven, L.P. and Shen, J., Crossed Andreev reflection in InSb flake Josephson junctions. Physical Review Research 1(3), 032031(2019)

22) Ma, M., Liu, K., Shen, J., Kas, R., & Smith, W. A.In-situ Fabrication and Reactivation of Highly Selective and Stable Ag Catalysts for Electrochemical CO2 Conversion. ACS Energy Letters, 3 (6), 1301–1306 (2018)

21) Shen, J., Heedt, S., Borsoi, F., van Heck, B., … Geresdi, A., Palmstrøm, C. J., Bakkers, E. P. A. M. & Kouwenhoven, L. P. (Shen is the equal contribution and corresponding author) Parity transitions in the superconducting ground state of hybrid InSb–Al Coulomb islands.  Nature Communications 9, 4801 (2018).

20) J Ridderbos, M Brauns, FK de Vries, J Shen, A Li, S Kölling, ...Hard superconducting gap and diffusion-induced superconductors in Ge–Si nanowires. Nano letters 20 (1), 122-130

19) Ridderbos, J., Brauns, M., Shen, J., de Vries, F. K., Li, A., Erik PAM Bakkers, E. P. A. M., Brinkman, A., Zwanenburg, F. A.Josephson Effect in a Few‐Hole Quantum Dot Advanced Materials 30, 1802257 (2018)

18) de Vries, F.K.*, Shen, J.*†, Skolasinski, R. J., Nowak, M. P., Varjas, D., Wang, L., Wimmer, M., Ridderbos, J., Zwanenburg, F.A., Li, A., Koelling, S., Verheijen, M. A., Bakkers, E. P. A. M. & Kouwenhoven†. (Shen is the equal contribution and corresponding author) Spin–Orbit Interaction and Induced Superconductivity in a One-Dimensional Hole Gas Nano letters 18 (10), 6483–6488 (2018).

17) Woods, J. M.*, Shen, J.*, Kumaravadivel, P., Pang, Y., Xie, Y., Pan, G. A., ... & Cha, J. J. (*The first two authors contributed equally to this work.) Suppression of magnetoresistance in thin WTe2 flakes by surface oxidation.ACS applied materials & interfaces 9(27), 23175-23180 (2017).

16) Shen, J., Woods, J.M., Xie, Y. J., Morales-Acosta, M. D. & Cha, J.Structural Phase Transition and Carrier Density Tuning in SnSexTe1-x Nanoplates.Advanced Electronic Materials 2, 1600144 (2016). 

15Shen, J., Xie, Y. J., & Cha, J. J. Revealing surface states in In-doped SnTe superconducting nanoplates with low bulk mobility.Nano letters 15, 3827-3832 (2015).

14) Yu, L., Jung, D., Law, S., Shen, J., Cha, J. J., Lee, M. L., & Wasserman, D. Controlling quantum dot energies using submonolayer bandstructure engineering. Applied Physics Letters 105, 081103 (2014).

13) Zhu, X., Morales-Acosta, M.D., Shen, J., Walker, F.J., Cha, J. J., & Altman, E.I. Growth, structure, and electronic properties of nonpolar thin films on a polar substrate: Cr2O3 on ZnO (0001) and ZnO (000 1¯). Physical Review B 92, 165414 (2015).

12) Jung, Y., Shen, J., & Cha, J. J. Surface effects on electronic transport of 2D chalcogenide thin films and nanostructuresNano Convergence 1, 18 (2014). (Review)- recognized as a highly contributed paper by Nano Convergence in 2015

11) Shen, J., & Cha, J. J. Topological crystalline insulator nanostructures. Nanoscale 6, 14133-14140 (2014). (Review)

10) Jung, Y., Shen, J., Sun, Y., & Cha, J. J. Chemically Synthesized Heterostructures of Two-Dimensional Molybdenum/Tungsten-Based Dichalcogenides with Vertically Aligned Layers ACS nano, 8, 9550-9557 (2014).

9) Shen, J., Song, Y., Lee, M. L., & Cha, J. J. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems. Nanotechnology 25, 465702 (2014)

8) Jung, Y., Shen, J., Liu, Y., Woods, J. M., Sun, Y., & Cha, J. J. Metal seed layer thickness-induced transition from vertical to horizontal growth of MoS2 and WS2. Nano letters 12, 6842-6849 (2014)

7) Shen, J., Jung, Y., Disa, A. S., Walker, F. J., Ahn, C. H., & Cha, J. J. Synthesis of SnTe Nanoplates with {100} and {111} surfaces. Nano letters 14, 4183-4188 (2014).

6)L. Yu, D. Jung, S. Law, J. Shen, J. J. Cha, M. L. Lee, D. Wasserman. Controlling quantum dot energies using submonolayer bandstructure engineering. Appl. Phys. Lett. 105 (081103)

5)Chang, C. Z.*, Zhang, J. S.*, Feng, X.*, Shen, J.*, Zhang, Z. C, Guo, M. H., Li, K., Ou, Y. B., Wei, P., Wang, L. L., Ji, Z. Q., Feng, Y., Ji, S. H., Chen, X., Jia, J. F., Dai, X., Fang, Z., Zhang, S. C., He, K.†, Wang, Y. Y.†, Lu, L., Ma, X. C., & Xue, Q. K.† (*The first four authors contributed equally to this work.)Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340, 167-170 (2013)

4) Yang, F., Ding, Y., Qu, F., Shen, J., Chen, J., Wei, Z. C., Ji, Z. Q., Liu, G. T., Fan, J., Yang, C. L., Xiang, T. & Lu, L. Proximity effect at superconducting Sn- Bi2Se3 interface. Physical Review B 85, 104508 (2012).

3) Qu, F. M.*, Yang, F.*, Shen, J.*, Ding, Y., Chen, J., Ji, Z. Q., Liu, G. T., Fan, J., Jing, X. N., Yang, C. L., & Lu, L. (*The first three authors contributed equally to this work.)  Strong superconducting proximity effect in Pb-Bi2Te3 hybrid structures. Scientific reports 2, 339 (2012)

2) Yang, F., Qu, F., Shen, J., Ding, Y., Chen, J., Ji, Z. Q., Liu, G. T., Fan, J., Yang, C. L., Fu, L. & Lu, L. Proximity-effect-induced superconducting phase in the topological insulator Bi2Se3. Physical Review B 86, 134504 (2012).

1) Qu, F., Yang, F., Chen, J., Shen, J., Ding, Y., Lu, Lu, J. B., Song, Y. J., Yang, H. X., Liu, G. T., Fan, J., Li, Y. Q., Ji, Z. Q., Yang, C. L. & Lu, L. Aharonov-Casher effect in Bi2Se3 square-ring interferometers. Physical review letters 107, 016802 (2011)

 

目前的研究课题及展望


1. 拓扑量子比特器件的物理实现,包括一维强自旋轨道耦合纳米线和超导的复合器件、二维拓扑绝缘体和超导的复合器件以及其他新型拓扑超导体系
2. 介观量子器件的集成化以及应用化,包括基于强自旋轨道耦合的自旋器件、量子点等等

培养研究生情况


招硕士、博士、博士后以及研究助理。

电话


010-82649981
010-82649981

Email


shenjie@iphy.ac.cn