陆雅翔

简介


2012.09-2015.12     英国伯明翰大学,博士

2015.10-2016.11     英国萨里大学,博士后

2017.02-2018.04     中国科学院物理研究所,“国际青年学者”

2018.04-2024.09     中国科学院物理研究所,副研究员

2020.12-至今          中国科学院物理研究所,博士生导师

2024.09-至今          中国科学院物理研究所,研究员     

曾入选中国科学院青年创新促进会会员(2020),主持国家自然科学基金优秀青年基金项目(2021), 担任科技部国家重点研发计划(青年项目)首席科学家(2022),荣获中国科学院物理研究所科技新人奖(2022),Energy Storage Materials Young Scientist Award (2023),第十八届中国青年科技奖(2024)。             

主要研究方向


新能源材料与器件研究,包括:

1) 发展高性能电极和电解质材料;

2) 构筑高兼容电极与电解质界面;

3) 解析材料构效关系与储能机制;

4) 构建安全环保储能电池新体系;

过去的主要工作及获得的成果


主要从事清洁能源转换与存储器件(燃料电池、二次电池)领域的研究工作,在制备无机材料和碳基材料、探索材料成核与生长机制、揭示电荷载体存储机理、阐明微观结构与宏观性能关系等方面取得了一些进展,主要工作如下:
1) 提出新型预氧化方法制备高容量碳负极材料。引入氧原子产生交联结构,抑制沥青在高温碳化过程中的熔化,阻碍碳原子有序重排,使碳负极材料产碳率从54%提高到67%,储钠容量从94 mAh/g增加到300 mAh/g,初始库仑效率从64.2%提升到88.6%;该方法对其他碳源的预处理具有普适性。
2) 运用低温碳化技术提高碳负极材料倍率性能。低温碳化提高了沥青基碳材料的缺陷浓度,增加了储钠活性位点,使斜坡区容量得到提升,为高功率钠离子电池的开发提供新思路。
3) 揭示碳负极多孔结构对储钠性能的作用规律。借助多种孔结构表征技术,结合非原位测试方法,区分多孔碳负极开孔和闭孔的孔隙率、孔面积、孔径大小及分布,发现增加闭孔数量并减少开孔数量是实现高首效、高容量碳负极的有效方法。
4) 基于绿色化学方法调控碳负极材料闭合孔隙结构。通过溶剂热合成与高温碳化相结合制备出富含闭合孔的碳负极材料,将储钠容量提升至410 mAh/g,首周库仑效率为84%,可大幅提升钠离子电池的能量密度。
5) 运用超低盐浓度电解液拓宽钠离子电池工作温度范围。低盐浓度电解液改善了界面浸润性,降低了对电极和集流体的腐蚀风险,所形成的富含有机成分的界面膜具有优异的热/动力学性能,提高了钠离子电池极端温度环境下的运行稳定性。
6) 构建高能量密度、长寿命水系钾离子原型电池。通过对普鲁士蓝类正极材料进行掺杂改性,利用聚合物负极材料在水系电解液中的稳定性,结合高盐浓度电解液对电压窗口的拓宽,首次成功构筑能量密度为80 Wh/kg,循环寿命2000次以上的水系钾离子原型电池。

代表性论文及专利


[1] Lu Yaxiang*. Decoding thermal stability, Nature Energy, 2025. https://doi.org/10.1038/s41560-025-01734-8. (News & Views)

[2] Yang, Yang#; Wang, Zaifa#; Du, Congcong; Wang, Bowen; Li, Xinyan; Wu, Siyuan; Li, Xiaowei; Zhang, Xiao; Wang, Xubin; Niu, Yaoshen; Ding, Feixiang; Rong, Xiaohui*; Lu Yaxiang*; Zhang, Nian; Xu, Juping; Xiao, Ruijuan; Zhang, Qinghua; Wang, Xuefeng; Yin, Wen; Zhao, Junmei; Chen, Liquan; Huang, Jianyu*; Hu, Yong-Sheng*. Decoupling the air sensitivity of Na-layered oxides, Science, 2024, 385(6710): 744752.

[3] Li, Yuqi#; Vasileiadis, Alexandros#; Zhou, Quan#; Lu Yaxiang*; Meng, Qingshi; Li, Yu; Ombrini, Pierfrancesco; Zhao, Jiabin; Chen, Zhao; Niu, Yaoshen; Qi, Xingguo; Xie, Fei; Jagt, Remco van der; Ganapathy, Swapna; Titirici, Maria-Magdalena; Li, Hong; Chen, Liquan; Wagemaker, Marnix*; Hu, Yong-Sheng*. Origin of fast charging in hard carbon anodes, Nature Energy, 2024, 9: 134142.

[4] Ding, Feixiang; Ji, Pengxiang; Han, Zhen; Hou, Xueyan; Yang, Yang; Hu, Zilin; Niu, Yaoshen; Liu, Yuan; Zhang, Jiao; Rong, Xiaohui; Lu Yaxiang*; Mao, Huican*; Su, Dong*; Chen, Liquan; Hu, Yong-Sheng*. Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials, Nature Energy, 2024, 9(12): 15291539.

[5] Jiang, Liwei#; Han, Shuai#; Hu, Yuan-Chao#; Yang, Yang; Lu Yaxiang*; Lu, Yi-Chun*; Zhao, Junmei*; Chen, Liquan; Hu, Yong-Sheng*. Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries, Nature Energy, 2024, 9(7): 839–848.

[6] Zhao, Xiaobing; Shi, Peng; Wang, Haibo; Meng, Qingshi; Qi, Xingguo; Ai, Guanjie; Xie, Fei; Rong, Xiaohui; Xiong, Ying; Lu Yaxiang*; Hu, Yong-Sheng. Unlocking plateau capacity with versatile precursor crosslinking for carbon anodes in Na-ion batteries, Energy Storage Materials, 2024, 70: 103543.

[7] Ding, Feixiang; Lu Yaxiang*; Chen, Liquan; Hu, Yong-Sheng. High-entropy strategy for electrochemical energy storage materials, Electrochemical Energy Reviews, 2024, 7(16): 18.

[8] Dai, Tao; Wu, Siyuan; Lu Yaxiang*; Yang, Yang; Liu, Yuan; Chang, Chao; Rong, Xiaohui; Xiao, Ruijuan; Zhao, Junmei*; Liu, Yanhui; Wang, Weihua; Chen, Liquan; Hu, Yong-Sheng*. Inorganic glass electrolytes with polymer-like viscoelasticity, Nature Energy, 2023, 8: 1221–1228.

[9] Ding, Feixiang; Wang, Haibo; Zhang, Qinghua; Zheng, Lirong; Guo, Hao; Yu, Pengfei; Zhang, Nian; Guo, Qiubo; Xie, Fei; Dang, Rongbin; Rong, Xiaohui; Lu Yaxiang*; Xiao, Ruijuan*; Chen, Liquan; Hu, Yong-Sheng*. Tailoring electronic structure to achieve maximum utilization of transition metal redox for high-entropy Na layered oxide cathodes, Journal of the American Chemical Society, 2023, 145(25): 13592–13602.

[10] Li, Yuqi; Liu, Qiunan; Wu, Siyuan; Geng, Lin; Popovic, Jelena; Li, Yu; Chen, Zhao; Wang, Haibo; Wang, Yuqi; Dai, Tao; Yang, Yang; Sun, Haiming; Lu Yaxiang*; Zhang, Liqiang; Tang, Yongfu; Xiao, Ruijuan; Li, Hong; Chen, Liquan; Maier, Joachim; Huang, Jianyu; Hu, Yong-Sheng*. Unraveling the reaction mystery of Li and Na with dry air, Journal of the American Chemical Society, 2023, 145(19): 1057610583.

[11] Li, Yuqi; Zhou, Quan; Weng, Suting; Ding, Feixiang; Qi, Xingguo; Lu, Jiaze; Li, Yu; Zhang, Xiao; Rong, Xiaohui; Lu Yaxiang*; Wang, Xuefeng; Xiao, Ruijuan; Li, Hong; Huang, Xuejie; Chen, Liquan; Hu, Yong-Sheng*. Interfacial engineering to achieve an energy density of over 200 Wh/kg in sodium batteries, Nature Energy, 2022, 7(6): 511–519.

[12] Ding, Feixiang; Zhao, Chenglong; Xiao, Dongdong; Rong, Xiaohui*; Wang, Haibo; Li, Yuqi; Yang, Yang; Lu Yaxiang*; Hu, Yong-Sheng*. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability, Journal of the American Chemical Society, 2022, 144: 82868295.

[13] Xie, Fei; Niu, Yaoshen; Zhang, Qiangqiang; Guo, Zhenyu; Hu, Zilin; Zhou, Quan; Xu, Zhen; Li, Yuqi; Yan, Ruiting; Lu Yaxiang*; Titirici, Maria‐Magdalena; Hu, Yong‐Sheng*. Screening heteroatom configurations for reversible sloping capacity promises high‐power Na‐ion batteries, Angewandte Chemie International Edition, 2022, 61(11): e202116394.

[14] Zhao, Chenglong#; Wang, Qidi#; Yao, Zhenpeng#; Wang, Jianlin; Sánchez-Lengeling, Benjamín; Ding, Feixiang; Qi, Xingguo; Lu Yaxiang*; Bai, Xuedong; Li, Baohua; Li, Hong; Aspuru-Guzik, Alan*; Huang, Xuejie; Delmas, Claude*; Wagemaker, Marnix*; Chen, Liquan Hu; Hu, Yong-Sheng*. Rational design of layered oxide materials for sodium-ion batteries, Science, 2020, 370: 708–711.

[15] Li, Yuqi#; Yang, Yang#Lu Yaxiang*; Zhou, Quan; Qi, Xingguo; Meng, Qingshi; Rong, Xiaohui; Chen, Liquan; Hu, Yong-Sheng*. Ultralow-concentration electrolyte for Na-ion batteries, ACS Energy Letters, 2020, 5: 11561158.

[16] Zhao, Chenglong#; Ding, Feixiang#; Lu Yaxiang*; Chen, Liquan; Hu, Yong-Sheng*. High-entropy layered oxide cathodes for sodium-ion batteries, Angewandte Chemie International Edition, 2020, 59(1): 264269.

 

2020年以前文章:

[1] L.W. Jiang, Y.X. Lu*, C.L. Zhao, L.L. Liu, J.N. Zhang, Q.Q. Zhang, X. Shen, J.M. Zhao, X.Q. Yu, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu*, Building aqueous K-ion batteries for energy storage, Nature Energy 4 (2019) 495-503.

[2] Y.Q. Li, Y.X. Lu*, P. Adelhelm*, M.M. Titirici*, Y.-S. Hu*, Intercalation chemistry of graphite: alkali metal ions and beyond, Chemical Society Reviews 48 (2019) 4655-4687.

[3] Y.R. Qi, Y.X. Lu*, F.X. Ding, Q.Q. Zhang, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu*, Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries, Angewandte Chemie International Edition 58 (2019) 4361-4365.

[4] Y.Q. Li, Y.X. Lu*, Q.S. Meng, A.C.S. Jensen, Q.Q. Zhang, Q.H. Zhang, Y.X. Tong, Y.R. Qi, L. Gu, M.M. Titirici, Y.-S. Hu*, Regulating pore structure of hierarchical porous waste cork‐derived hard carbon anode for enhanced Na storage performance, Advanced Energy Materials 9 (2019) 1902852.

[5] Y.H. Zheng, Y.X. Lu*, X.G. Qi, Y.S. Wang, L.Q. Mu, Y.M. Li, Q. Ma, J. Li*, Y.-S. Hu*, Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode, Energy Storage Materials 18 (2019) 269-279.

[6] Q.S. Meng, Y.X. Lu*, F.X. Ding, Q.Q. Zhang, L.Q. Chen, Y.-S. Hu*, Tuning Closed Pore Structure of Hard Carbons with Highest Na Storage Capacity, ACS Energy Letters 4 (2019) 2608-2612.

[7] Y.X. Lu, X.H. Rong, Y.-S. Hu, H. Li*, L.Q. Chen, Research and development of advanced battery materials in China, Energy Storage Materials 23 (2019) 144-153.

[8] Y.X. Lu, C.L. Zhao, X.G. Qi, Y.R. Qi, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu*, Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance, Advanced Energy Materials 8 (2018) 1800108.

[9] C.L. Zhao, Q.D. Wang, Y.X. Lu*, B.H. Li, L.Q. Chen, Y.-S. Hu*, High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau, Science Bulletin 63 (2018) 1125–1129.

[10] C.L. Zhao, L.L. Liu, X.G. Qi, Y.X. Lu*, F.X. Wu, X.H. Rong, J.M. Zhao, Y. Yu*,Y.-S. Hu*, L.Q. Chen, Solid-state sodium batteries, Advanced Energy Materials 8 (2018) 1703012.

[11] Y.X. Lu, R. Steinberger-Wilckens, S.F. Du*, Evolution of gas diffusion layer structures for aligned Pt nanowire electrodes in PEMFC applications, Electrochimica Acta 279 (2018) 99-107.

[12] Y.X. Lu, L.Q. Wang, K. Preuß, M. Qiao, M.-M. Titirici*, J. Varcoe, Q. Cai*, Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells, Journal of Power Sources 372 (2017) 82-90.

[13] Y.X. Lu, S.F. Du*, R. Steinberger-Wilckens, One-dimensional nanostructured electrocatalysts for polymer electrolyte fuel cells--a review, Applied Catalysis. B: Environmental 199 (2016) 292-314.

[14] Y.X. Lu, S.F. Du*, R. Steinberger-Wilckens, Three-dimensional catalyst electrodes based on PdPt nanodendrites for oxygen reduction reaction in PEFC applications, Applied Catalysis. B: Environmental 187 (2016) 108-114.

[15] Y.X. Lu, S.F. Du*, R. Steinberger-Wilckens, Temperature-controlled growth of single-crystal Pt nanowire arrays for high performance catalyst electrodes in polymer electrolyte fuel cells, Applied Catalysis. B: Environmental 164 (2015) 389-395.

目前的研究课题及展望


主持的科研项目:科技部国家重点研发计划(青年项目),国家自然科学基金优秀青年基金项目,国家自然科学基金面上项目,北京市自然科学基金面上项目,中国科学院“青年创新促进会”项目,企业前瞻性战略研发项目等。
参加的科研项目:国家自然科学基金国际(中英)合作研究项目,北京市自然科学基金重点研究专题,中国科学院战略性先导科技专项等。
目前重点开展先进二次电池关键材料、储能机制、界面性质及器件研发,主要关注非水钠离子电池、固态钠电池和水系钠、钾离子电池体系。

培养研究生情况


计划每年招收硕博连读生/博士生2-3名,欢迎具有材料、物理、化学、电化学等相关专业背景且有志科研的考生报考。

其他联系方式


办公室:M楼307
电话:   010-82649047

Email


yxlu@iphy.ac.cn