闫新中

简介:

男, 1958年8月12日生于陕西省。1982年2月毕业于北京大学物理系,理学学士学位;1982年10月赴日本东京大学理学系留学, 1985年取得理学硕士,1988取得理学博士学位;1988年4月进入物理研究所工作;1998年7月-2000年6月赴美国Texas A&M University物理系合作研究。2006年1月-2007年12月, 赴Texas超导中心合作研究.

主要研究方向:

凝聚态理论物理。强关联电子系统, Granphene中相互作用电子系统的电学性质,输运理论。

过去的主要工作及获得的成果:

1. 1982年-1991年,主要研究强耦合等离子体,利用密度泛函方法,发展了确定粒子间相互关联的积分方程组理论, 并将该理论运用于对液态金属的研究。
2. 1992年开始研究凝聚态物理。对于铜氧化物超导体,研究了d-波超导体的表面性质,表面束缚态的形成,解释了高温超导体间Josephson隧道电流在磁场下的异常效应等现象。在Hubbard模型中考虑杂质的散射效应, 采用自旋及配对涨落交换近似, 研究了电子搀杂铜氧化物超导体的反铁磁相变, 解释了相变温度,赝能隙, 以及Fermi面随电子浓度的变化等实验结果。
3. 对于长程Coulomb相互作用的二维电子系统,进行了涨落交换近似下的理论计算。通过与Monte Carlo的基态能量结果的比较,验证了涨落交换理论的准确性,以及新方法比无规相角近似理论的优越性。
4. 研究Graphene中电子在带电杂质有限力程散射下的输运性质。改进了短程杂质散射以及经典Boltzmann理论,定量地解释了关于电导率, Hall系数, 热电势, 以及弱局域化效应等一系列实验结果。
5. 提出了双层Graphene电子系统低温低载流子浓度下的自旋电流有序态模型, 成功地解释了一系列重要的(以前的理论无法解释的)实验结果。
6. 建立了关于离散Fourier变换的超高效计算方法。该方法能够大幅度地减少对计算机存储容量的要求,计算效率比普通法则可以提高几个数量级。对于相互作用多粒子系统, 采用该方法,重整化Green函数的自洽计算变得简单易行。

代表性论文及专利:

1.    X. –Z. Yan and C. S. Ting, “Integer quantum Hall effect of interacting electrons in graphene”, Phys. Rev. B 95, 075107 (2017). 
2.    X. –Z. Yan, Y. F. Ma, and C. S. Ting, “Phase boundary of spin-polarized-current state of electrons in bilayer graphene”, Phys. Rev. B 93, 245158 (2016). 
3.    X. –Z. Yan and C. S. Ting, “Current orderings of interacting electrons in bilayer graphene”, Phys. Rev. B 92, 075442 (2015). 
4.    X. –Z. Yan and C. S. Ting, “Spin-polarized current state of electrons in bilayer graphene”,Phys. Rev. B 89, 201108(R) (2014).
5.    X. –Z. Yan and C. S. Ting, “Ordered-Current State of Electrons in Bilayer Graphene”,Phys. Rev. B 88, 045410 (2013).
6.    X. –Z. Yan and C. S. Ting, “Possible broken inversion and time-reversal symmetry state of electrons in bilayer graphene”, Phys. Rev. B 86, 235126 (2012).
7.    X. –Z. Yan and C. S. Ting, “Absence of gapped broken inversion symmetry phase of electrons in bilayer graphene under the renormalized ring-diagram approximation”, Phys. Rev. B 86, 125438 (2012).
8.    X. –Z. Yan, “Approximation for discrete Fourier transform and application in study of three-dimensional interacting electron gas”, Phys. Rev. E 84, 016706 (2011).
9.    X. –Z. Yan and C. S. Ting, “Compressibility of interacting electrons in bilayer graphene”, Phys. Rev. B 84, 035457 (2011).
10.    X. –Z. Yan and C. S. Ting, “Nernst effect of Dirac fermions in graphene under a weak magnetic field”, Phys. Rev. B 81, 155457 (2010).
11.    X. –Z. Yan, Y. Romiah, and C. S. Ting, “Thermoelectric power of Dirac fermions in graphene”, Phys. Rev. B 80, 165423 (2009). 
12.    X. –Z. Yan and C. S. Ting, “Hall coefficient of Dirac fermions in graphene under charged impurity scatterings”, Phys. Rev. B 80, 155423 (2009).
13.    X. –Z. Yan and C. S. Ting, “Magnetoconductivity of Dirac fermions in graphene under charged impurity scatterings”, New J. Phys. 11, 093026 (2009).
14.    X. –Z. Yan and C. S. Ting, “Supercurrent transfering through c-axis cuprate Josephson junctions with thick normal-metal bridge”, J. Phys.: Condens. Matter, 21, 035701 (2009).
15.    X. –Z. Yan, and C. S. Ting, “Weak Localization of Dirac Fermions in Graphene”, Phys. Rev. Lett. 101, 126801 (2008)
16.    X. –Z. Yan, Y. Romiah, and C. S. Ting, “Electric transport theory of Dirac fermions in graphene”, Phys. Rev. B 77,125409 (2008).
17.    X. –Z. Yan and C. S. Ting, “Interacting electrons in graphene studied under the renormalized-ring-diagram approximation”, Phys. Rev. B 76, 155401 (2007)
18.    X. -Z. Yan and C. S. Ting, “Study of two-dimensional electron systems in the renormalized-ring-diagram approximation”, Phys. Rev. B 75, 035432 (2007).
19.    X. -Z. Yan and C. S. Ting, “Fluctuation-Exchange Study of Antiferromagnetism in Disordered Electron-Doped Cuprate Superconductors”, Phys. Rev. Lett. 97, 067001 (2006).
20.    X. -Z. Yan, Q. Yuan, and C. S. Ting, “Theory of antiferromagnetism in the electron-doped cuprate superconductors”, Phys. Rev. B 74, 214521 (2006).
21.    X. -Z. Yan, “Long-range Coulomb effect on the antiferromagnetic ordering in electron-doped cuprate superconductors”, Phys. Rev. B 73, 052501 (2006).
22.    X. –Z. Yan, “Superconductivity in the quasi-two-dimensional Hubbard model”, Phys. Rev. B 71, 104520 (2005).
23.    X. –Z. Yan, “Pairing-Fluctuation Effect in d-Wave Superconductivity”, J. Phys. Condens. Matter 15, L319 (2003).
24.    X. –Z. Yan, H. Zhao, and C.-R. Hu, “Electron transport in normal-metal-superconductor junctions”, Phys. Rev. B 61, 14759 (2000).
25.    X. –Z. Yan and C. -R. Hu, “Magnetic field effect in Josephson tunneling between d-wave superconductors”, Phys. Rev. Lett. 83, 1656 (1999).
26.    X. -Z. Yan and H. Iyetomi, “Surface states in d-wave superconductors”, Phys. Rev. B 57, 7944 (1998).
27.    X. -Z. Yan, “The boundary effect in d-wave superconductors”, J. Phys.: Condens. Matter 10, 11607 (1998).
28.    X. -Z. Yan, “d-wave pairing near the boundary of superconductors”, Phys. Rev. B 56, 8374 (1997).
29.    X. -Z. Yan, “Theory of Josephson tunneling between d-wave Superconductors”, Solid State Commun. 99, 63 (1996).
30.    X. -Z. Yan, “Density of states of electrons in liquid Lithium”, Phys. Rev. B 51, 15823 (1995).
31.    X. -Z. Yan, X. M. Tong, “Correlation functions of liquid alkali metals near freezing”, Phys. Rev. B 49, 6608 (1994).
32.    X. -Z. Yan, “Theory of the extended Hubbard model at half filling”, Phys. Rev. B 48, 7140 (1993).
33.    X. -Z. Yan, “Ground-state properties of square-lattice Hubbard model at half filling”, Phys. Rev. B 46, 9231 (1992).
34.    X. -Z. Yan, “Generalized spin-wave theory for the Hubbard model at half filling”, Phys. Rev. B 45, 4741 (1992).
35.    X. -Z. Yan, S. T. Tsai, “Localization of quantum-mechanical particle in classical simple fluids”, Phys. Rev. A 46, 4704 (1992).
36.    X. -Z. Yan, S. T. Tsai, and S. Ichimaru, “Strong-coupling theory of hydrogen plasmas”, Phys. Rev. A 43, 3057 (1991).
37.    X. -Z. Yan and S. Ichimaru, “Numerical examination of the modified convolution- approximation scheme for classical one-component plasmas”, J. Phys. Soc. Jpn. 56, 3863 (1987).
38.    X. -Z. Yan and S. Ichimaru, “Theory of interparticle correlations in dense, high-temperature plasmas. VII. Polarization shifts of spectral lines”, Phys. Rev. A 34, 2173 (1986).
39.    X. -Z. Yan and S. Ichimaru, “Theory of interparticle correlations in dense, high-temperature plasma. VI. Probability densities of the electric microfields”, Phys. Rev. A 34, 2167 (1986).
40.    X. -Z. Yan, S. Mitake, S. Tanaka, and S. Ichimaru, “Theory of interparticle correlations in dense, high-temperature plasmas. IV. Stopping power”, Phys. Rev. A 32, 1785 (1985).

目前的研究课题及展望:

Graphene电子系统的Coulomb相互作用效应。采用多粒子体系的Green函数理论, 研究Graphene体系的电学性质。研究低温下的体系性质,是一个基本的理论课题,对于实际应用具有重要意义。

电话:

010-82649322

Email:

yanxz@iphy.ac.cn