孙保安

简介


1982年生, 本科(2004年)和硕士(2007年)毕业于山东大学,2011年博士毕业于中国科学院物理研究所,获理学博士,2011.01-2016.10先后在德国德累斯顿莱布尼兹固体材料研究所(IFW,Dresden) 和香港城市大学进行博士后研究,2016.11-2018.03 在南京理工大学格莱特纳米科技研究所工作,2018年3月加入中国科学院物理研究所极端条件物理实验室,先后任副研究员、研究员,博士生导师

主要研究方向


先进非晶态材料的开发、物性和应用
 

过去的主要工作及获得的成果


非晶态材料是相对于晶体材料而言的一大类材料。这类材料的原子结构无序,能量上处于非平衡亚稳态,因此具有很多优异的性质,尤其是近年来发展的非晶态合金(又称液态金属,金属玻璃),和传统金属合金相比具有很多优异的力学和物理化学性质,在很多高新技术领域具有广泛的应用前景。同时,晶体物理的理论范式对非晶态物质并不适用。非晶态材料里存在着很多基本物理问题尚未解决。研究工作主要集中在非晶态合金的结构、力学和软磁等性能开发、调控机理和新型非晶态材料的开发和应用等方面。以第一/通讯作者在包括Nature Physics, Phys.Rev. Lett., Science Advances, Prog. Mater. Sci., Adv. Mater., Acta Mater.,Phys Rev B/Mater.等期刊发表SCI论文100余篇,SCI他引4000余次,其中两篇论文入选ESI高被引论文。2018年获得国家自然科学基金委优秀青年基金的资助, 2019年获国家自然科学二等奖(第三完成人)。曾获中国科学院院长优秀奖(2011)、中国材料大会非晶与高熵合金分会杰出青年科学家奖(2017)等荣誉。

主要成果:

(1)非晶合金力学形变机理以及强韧化:建立了实验解析非晶局域原子非仿射形变的应力诱导结构各向异性方法,实验研究了非晶合金在介观尺度不均匀变形特征(剪切带和裂纹)及其扩展失稳机理,为设计和调控非晶合金的宏观力学性能提供了理论基础,在此基础上开发出新型高强高韧性非晶合金新材料[Nature Phys., 19:1896(2023); Sci. Adv, eabf7293(2021); Sci. Bull., 66,1312 (2021);Acta Mater.222, 111444(2022)等]

 (2)  非晶合金的功能特性开发和调控:开发出具有新型高饱和磁感应强度的过渡态软磁合金以及高频高磁导率的超细纳米晶结构的Fe基软磁合金新材料; 开发出一种具有高能量状态的Ni-P纳米非晶合金催化剂,表现出Ni基合金中最好的催化性能(UOR和HER); 发现化学无序的高熵合金的室温以上自旋玻璃行为,以及磁阻挫导致的拓扑霍尔效应[Adv. Mater. 2200850(2022); Adv. Mater. 35: 2025863(2023),35:2304490(2023); Adv. Mater.36: 2308415(2024);  Phys. Rev. Mater. 6: L091401(2022)]

 (3) 非晶合金的弛豫动力学以及表面效应:发现了纳米厚度非晶薄膜的明显室温弛豫现象,建立了弛豫动力学的尺寸-温度-尺度等效关系;发现了能量状态控制的一种新的弛豫动力学新模式;基于能量状态调控发现具有高GMI效应的Co基非晶合金丝材;发现了非晶合金表面的超厚软化层,远高于动力学估算厚度,为理解非晶合金性能的尺寸效应提供了基础;[The Innovation, 2, 100106(2021); Phys. Rev. B 105,014110(2022); Phys. Rev. B 106,214203(2022); Acta Mater. 255:119088(2023)] 

(4)搭建了非晶合金材料及其相关产品器件开发的中试化平台(松山湖材料实验室),开发出实用的块体非晶合金和软磁非晶合金新材料,实现中试化生产,探索了在机器人谐波减速器、无线充电、信息通讯等领域和产品中的应用,申请国家发明专利20余项;部分产品已取得了一定的经济效益。

代表性论文及专利


28. H. Z. Li, Y.Q. Yan, W. S. Cai, L. Y. Li, A. Yan, L. H. Liu, J. Ma*, H. B. Ke, Q. Li, B. A. Sun*, W. H. Wang, C. Yang*, Local adaptive insulation in amorphous powder cores with low core loss and high DC bias via ultrasonic rheomolding, Nature Communications, 2024, 15:9510.

27. Hongbo Zhou, Fusen Yuan, Yao Huang, Yutian Wang, Zhenxing Bo, Jingshan Cao, Weijie Xie, Qinghua Zhang, Yanhui Liu, Minqiang Jiang,* Baoan Sun,* and Weihua Wang, Modular Combinatorial Development of Crystal-GlassNano-Heterostructured Copper Alloys with Ultrahigh Strength and Large Deformability, Advanced Functional Materials, 2024,2413332:1-9.

26. Yunshu Wu,Feifei Wang, Yao Huang, Fu Zheng,Yuhao Zeng, Zhen Lu, Songlin Wang, Baoan Sun*, Yuchun Sun*, A tantalum-containing zirconium-based metallic glass with superior endosseous implant relevant properties, Bioactive Materials, 2024, 39:25-40.

25. Jihao Yu#, Yuying Liu#, Yubin Ke, Jiaqi Su, Jingshan Cao, Zian Li, Baoan Sun*, Haiyang Bai*, Weihua Wang, Observation of topological Hall effect in a chemically complex alloy, Advanced Materials, 2024, 36: 2308415.

24. Jie Dong#, Hailong Peng#*, Hui Wang#, Yang Tong*, Yutian Wang, Wojciech Dmowski, Takeshi Egami, Baoan Sun*, Weihua Wang & Haiyang Bai*, Non-affine atomic rearrangement of glasses through stress-induced structural anisotropy, Nature Physics, 19: 1896(2023). Highlighted in Rearranged under stress, New and Views, Nature Physics, Nov. 8, 2023

23. Jing Zhou#,  Xuesong Li#,  Xibei Hou Haibo Ke Xingdu Fan Junhua Luan Hailong Peng Qiaoshi Zeng Hongbo Lou Jianguo Wang Chain Tsuan Liu Baolong Shen Baoan Sun* Weihua Wang Haiyang Bai*,  Ultrahigh Permeability at High Frequencies via a magnetic-heterogeneous nanocrystallization mechanism in an iron-Based amorphous alloy, Advanced Materials, 2023,2304490

22. Chaoqun Pei, Shuang-qin Chen, Mingjie Zhou, Xianhao Chen, Baoan Sun*, S. Lan, H. Hahn, T. Feng*, Direct Urea/H2O2 Fuel Cell with a Hierarchical Porous Nanoglass Anode for High-Efficiency Energy Conversion. ACS Applied Materials & Interface,2023,15(20):24319-24328.

21. Chaoqun Pei, Bo Zhang, Jiuyuan Xie, Zongde Kou, Xuesong Li, Tao Feng*, Baoan Sun*, Weihua Wang, Superlattice-shelled nanocrystalline core structural design for highly sensitive GMI senors, Acta Materialia, 2023, 255, 119088. 

20. Chaoqun Pei, Jiuyuan Xie, Yong Zhao, Haibo Ke, Bo Zhang, Baoshuang Shang*, Tao Feng*, Baoan Sun* and Weihua Wang, Hidden and universal relaxation mode in metallic glasses of simple atomic structure, Physical Review B, 2022, 106, 214203

19. Xuesong Li#, Jing Zhou#, Laiquan Shen, Baoan Sun*, Haiyang Bai*, Weihua Wang, Exceptionally high saturation Magnetic Flux Density and Ultralow Coercivity via an Amorphous-Nanocrystalline Transitional Microstructure in an FeCo-Based Alloy, Advanced Materials, 2023, 2205863.

18. Jihao Yu, Weiwei Wu, Huaping Zhang, Ruiwen Shao, Fan Zhang, Hong Wang, Zian Li, Junhua Luan, Zengbao Jiao, Chain Tsuan Liu, Baoan Sun*, Haiyang Bai*, Weihua Wang, Robust spin glass state with exceptional thermal stability in a chemically complex alloy, Physical Review Materials, 2022, 6: L091401.

17. Chaoqun Pei, Shuangqin Chen*, Tianchen Zhao, Mai Li, Zhaotao Cui, Baoan Sun*, Sigui Hu, Si Lan, Horst Hahn, and Tao Feng*, Nanostructured Metallic Glass in a Highly Upgraded Energy State Contributing to Efficient Catalytic Performance, Advanced Materials, 2022,2200850. 

16. Boyang Sun, Wenhui Cao, Zijian Wang, Baoan Sun*, Weihua Wang*, Evident glass relaxation at room temperature induced by size effect, Physical Review B, 2022, 105,014110.

15. Long Zhang, Jinhao Zhang, Haibo Ke, Baoan Sun*, Zhengwang Zhu, Yandong Wang*, Hong Li, Aimin Wang, Zhefeng Zhang*, On low-temperature strength and tensile ductility of bulk metallic glass composites containing stable or shape-memory beta Ti crystals, Acta Materialia, 2022, 222, 111444.

14. Y.T. Wang#, Q. F. He#, Z. J. Wang, M.X. Li, Y. H. Liu, Y. Yang*, B. A. Sun*, W. H. Wang, Exceptionally shear-stable and ultra-strong Ir-Ni-Ta high-temperature metallic glasses at micro/nano scales. Science China Materials (2021). https://doi.org/10.1007/s40843-021-1760-8

13. Hongyu Jiang#, Jiyu Xu#, Qinghua Zhang*, Qian Yu, Laiquan Shen, Ming Liu, Yitao Sun,Chengrong Cao, Dong Su, Haiyang Bai, Seng Meng, Baoan Sun*, Gu Lin*, Weihua Wang, Direct observation of atomic-level fractal structure in a metallic glass membrane, Science Bulletin, 2021, 66,1312-1318.

12. J. H. Yu, L.Q. Shen, D. Sopu, B. A. Sun*, W. H. Wang, Critical growth and energy barriers of atomic-scale plastic flow units in metallic glasses, Scripta Materialia, 2021, 202,114033.

11. J. Dong, Y. Huan, B. Huang, J. Yi, Y. H. Liu, B. A. Sun*, W. H. Wang, H. Y. Bai*, Unusually thick shear- softening surface of micrometer-size metallic glasses, The Innovation, 2021, 2(2):100106.

10. Lai-Quan Shen, Ji-Hao Yu, Xiao-Tang Chang, Bao-An Sun*, Yan-Hui Liu, Hai-Yang Bai*, Wei-Hua Wang, Observation of cavitation governing fracture in glasses, Science Advances, 2021,7:eabf7293.

9. J. Dong, J. Shen, Y.H. Sun, H. B. Ke, B. A. Sun*, W. H. Wang and H. Y. Bai*, Composition and size dependent torsion fracture of metallic glasses, Journal of Materials Science&Technology, 82,153-160(2021)

8. Baoan Sun#,  Liping Yu#,  Gang Wang,  Xing Tong,  Chuan Geng,  Jingtao Wang,  Jingli Ren*, and Weihua Wang*, Chaotic dynamics in shear-band-mediated plasticity in metallic glasses, Physical Review B, 101, 224111 (2020). 

7. Cen Chen, Baoan Sun*, Wei Hua Wang*, Tzu Chiang Wang, Shear strength of a Zr-based metallic glass over a wide temperature range, Intermetallics, 118, 106690 (2020). 

6. Jie Dong, Yi-hui Feng, Yong Huan, Jun Yi, Wei-Hua Wang, Hai-Yang Bai*, Bao-An Sun*, Rejuvenation in Hot-Drawn Micrometer Metallic Glassy Wires, Chinese Physics Letter (Express Letter),37, 017103(2020). Highlighted by Physics World. https://physicsworld.com/a/making-metallic-glasses-more-plastic/

 5. L.F. Wang, J. H. Shao, Y. H. Liu, S. Lan, T. Feng, J. Hu, T. Zhang, B. A. Sun*, Quantifying configuration-entropy change during plastic flow of metallic glasses, Journal of Applied Physics, 126,235102 (2019).

4. Y. T. Wang, J. Dong, Y. H. Liu, H. Y. Bai, W. H. Wang, B. A. Sun*, Optimum shear stability at intermittent-to-smooth transition of plastic flow in metallic glasses at cryogenic temperatures, Materialia. 9, 100559 (2019).

3. Ge Wu, Chang Liu, Ligang Sun, Qing Wang, Baoan Sun, Bin Han, Ji-Jung Kai, Junhua Luan,Chain Tsuan Liu, Ke Cao, Yang Lu, Lizi Cheng& Jian Lu*, Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nature communications 10,5099 (2019).

2. Hongyu Jiang, Jing Li, Chengrong Cao, Xiaozhi Liu, Ming Liu, Yutian Shen, Yanhui Liu, Qinghua Zhang, Weihua Wang, Lin Gu* and Baoan Sun*, Butterfly-wing hierarchical metallic glassy nanostructure for surface enhanced scattering, Nano Research 12, 2808-2814 (2019). 

1. L. Q. Shen, P. Luo, Y. C. Hu, H. Y. Bai, Y. H. Sun, B. A. Sun, Y. H. Liu*& W. H. Wang*, Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass. Nature communications 9, 4414 (2018)
 

2018年入所前工作:
 Sun, B. A.*,Hu, Y. C.,Wang, D. P.,Zhu, Z. G.,Wen, P.,Wang, W. H.,Liu, C. T.,Yang, Y.*,Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses,Acta Materialia,121:266-276 (2016). 

 Sun, B. A. *,Song, K. K.,Pauly, S.,Gargarella, P.,Yi, J.,Wang, G.,Liu, C. T.,Eckert, J.,Yang, Y. *,Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding,International Journal of Plasticity, 85:34-51 (2016).

 B. A. Sun*, W. H. Wang, Fracture of bulk metallic glasses, Progress in Materials Science, 74, 211-307 (2015). 

B. A. Sun*, S. Pauly, J. Hu, W. H. Wang, U. Kühn, and J. Eckert, Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses, Physical Review Letters 110, 225501-5(2013).

B. A. Sun*, S. Pauly, J. Tan, M. Stoica, W. H. Wang, U.Kϋhn, J. Eckert, Serrated flow and stick-slip deformation dynamics in the presence of shear band interactions for a Zr-based bulk metallic glass, Acta Materialia 60, 4160-4171 (2012)

B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao and W. H. Wang*, Plasticity of   ductile metallic glasses: a self-organized critical state, Physical Review Letters 105, 035501-04 (2010).  

(* 通讯作者, #共同一作)



  

目前的研究课题及展望


基于无序、亚稳、高熵等特性,探索开发非晶合金和高熵合金等无序合金的新物性和新现象,研究这些性质背后的原子和电子结构机制;开发具有实用价值的非晶合金新材料,并探索其在先进制造、信息通讯、能源等领域的应用。目前承担国家自然科学基金委重大项目课题、国家重点研发规划课题等项目,参与中国科学院先导B等项目的研究。

培养研究生情况


目前在读博士生2名,协助培养博士研究生4名,计划每年招收博士研究生1-2 名,欢迎有志于非晶态物理和材料研究的学生报考。

其他联系方式


办公电话:010-82649523

Email:sunba@iphy.ac.cn

电话


010-82649523

Email


sunba@iphy.ac.cn